精英家教网 > 高中数学 > 题目详情
16、已知方程|2x-1|-|2x+1|=a+1有实数解,则a的取值范围为
[-3,-1)
分析:由已知方程|2x-1|-|2x+1|=a+1有解,分离出参数a+1=|2x-1|-|2x+1|,转化为求函数f(x)=|2x-1|-|2x+1|的值域.
解答:解:分离出参数a+1,
∵a+1=|2x-1|-|2x+1|,
∵函数f(x)=|2x-1|-|2x+1|值域为:[-2,0)
∴a+1∈[-2,0)
∴a的取值范围为:-3≤a≤-1.
故答案为:[-3,-1).
点评:通过构造函数,从而借助于函数的图象研究了函数值域的问题,将复杂问题简单化.整个解题过程充满对函数、方程和不等式的研究和转化,也充满了函数与方程思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(考生注意:请在下列两题中任选一题作答,如果多做则按所做的第一题评分)
(1)在极坐标系中,若过点(1,0)且与极轴垂直的直线交曲线ρ=4cosθ于A、B两点,则|AB|=
2
3
2
3

(2)已知方程|2x-1|-|2x+1|=a+1有实数解,则a的取值范围为
[-3,-1)
[-3,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

A.已知方程|2x-1|-|2x+1|=a+1有实数解,则a的取值范围为
[-3,-1)
[-3,-1)

B.如图,四边形ABCD内接于⊙O,BC是直径,MN切⊙O于A,∠MAB=25,则∠D=
115°
115°

C.设曲线C的参数方程为
x=2+3cosθ
y=-1+3sinθ
(θ为参数),直线l的参数方程为
x=1+2t
y=1+t
(t为参数),则直线l被曲线C截得的弦长为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列两题中任选一题作答,如果多做则按所做的第一题评分)
(A)在极坐标系中,过点(2
2
π
4
)作圆ρ=4sinθ的切线,则切线的极坐标方程为
ρcosθ=2
ρcosθ=2

(B)已知方程|2x-1|-|2x+1|=a+1有实数解,则a的取值范围为
[-3,-1]
[-3,-1]

查看答案和解析>>

科目:高中数学 来源:2012年江西省新余一中高考数学一模试卷(理科)(解析版) 题型:解答题

(考生注意:请在下列两题中任选一题作答,如果多做则按所做的第一题评分)
(A)在极坐标系中,过点(2)作圆ρ=4sinθ的切线,则切线的极坐标方程为   
(B)已知方程|2x-1|-|2x+1|=a+1有实数解,则a的取值范围为   

查看答案和解析>>

同步练习册答案