【题目】设抛物线C的顶点在原点,焦点F在y轴上,开口向上,焦点到准线的距离为![]()
(1)求抛物线的标准方程;
(2)已知抛物线C过焦点F的动直线l交抛物线于A、B两点,O为坐标原点,求证:
为定值.
科目:高中数学 来源: 题型:
【题目】已知
,函数
且
.
(1)求p,q的值以及函数
的表达式,并写出
的定义域D;
(2)设函数
,A=
,集合
,当
时,求实数k的取值范围;
(3)当
时,设
,数列
的前n项和为
,直线
的斜率为
,是否存在实数
,使
对一切
恒成立,若存在,分别求出实数
的取值范围,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线
的参数方程为
(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线
的极坐标方程为
,直线
与曲线C交于
两点.
(1)求直线
的普通方程和曲线C的直角坐标方程;
(2)求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四面体
中,
,且
两两互相垂直,点
是
的中心.
![]()
(1)求二面角
的大小(用反三角函数表示);
(2)过
作
,垂足为
,求
绕直线
旋转一周所形成的几何体的体积;
(3)将
绕直线
旋转一周,则在旋转过程中,直线
与直线
所成角记为
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点为F,F关于原点的对称点为P,过F作
轴的垂线交抛物线于M,N两点,给出下列三个结论:
①
必为直角三角形;
②直线
必与抛物线相切;
③
的面积为
.其中正确的结论是___.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,过点
的直线
的参数方程为
(
为参数),
与
交于
两点
(1) 求
的直角坐标方程和
的普通方程;
(2) 若
,
,
成等比数列,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法错误的是( )
A. 若直线
平面
,直线
平面
,则直线
不一定平行于直线![]()
B. 若平面
不垂直于平面
,则
内一定不存在直线垂直于平面![]()
C. 若平面
平面
,则
内一定不存在直线平行于平面![]()
D. 若平面
平面
,平面
平面
,
,则
一定垂直于平面![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
过点
,且它的焦距是短轴长的
倍.
(1)求椭圆
的方程.
(2)若
,
是椭圆
上的两个动点(
,
两点不关于
轴对称),
为坐标原点,
,
的斜率分别为
,
,问是否存在非零常数
,使当
时,
的面积
为定值?若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线E:
,圆C:
.
若过抛物线E的焦点F的直线l与圆C相切,求直线l方程;
在
的条件下,若直线l交抛物线E于A,B两点,x轴上是否存在点
使
为坐标原点
?若存在,求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com