精英家教网 > 高中数学 > 题目详情
将编号为1,2,3,4,5的5个小球,放入三个不同的盒子,其中两个盒子各有2个球,另一个盒子有1个球,则不同的放球方案有
90
90
种(用数字作答).
分析:根据题意,分3步进行,先在3个盒子中任取2个,再从编号为1,2,3,4,5的5个小球中任取出2个球放在其中一个盒子中,最后从剩余的3个球中取出2个球放在另一个盒子中.分别求出每种情况的放法数目,由分步计数原理,计算可得答案.
解答:解:根据题意,分3步进行,
第一步:先在3个盒子中任取2个,有C32=3种情况,
第二步:再从编号为1,2,3,4,5的5个小球中任取出2个球放在其中一个盒子中,有C52=10种情况,
第三步:最后从剩余的3个球中取出2个球放在另一个盒子中,有C32=3种情况,
则共有3×10×3=90种情况,
故答案为90
点评:本题考查排列、组合的计数问题,涉及分类、分步计数原理的应用,解题是要认真分析题意,同时满足题意中的限制条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、将编号为1,2,3,4,5的五个球放入编号为1,2,3,4,5的五个盒子,每个盒内放一个球,若恰好有两个球的编号与盒子编号相同,则不同的投放方法的种数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

某人随机地将编号为1,2,3的三个小球放入编号为1,2,3的三个盒子中,每个盒子放一个小球,全部放完.则编号为2的小球放入到编号为奇数的盒子中的概率等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将编号为1、2、3的三个小球,放入编号为1、2、3、4的四个盒子中如果每个盒子中最多放一个球,那么不同的放球方法有
24
24
种;如果4号盒子中至少放两个球,那么不同的放球方法有
10
10
种.

查看答案和解析>>

科目:高中数学 来源: 题型:

将编号为1,2,3,4的四个小球,分别放入编号为1,2,3,4的四个盒子,每个盒子中有且仅有一个小球.若小球的编号与盒子的编号相同,得1分,否则得0分.记ξ为四个小球得分总和.
(1)求ξ=2时的概率;
(2)求ξ的概率分布及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

某人随机地将编号为1,2,3,4的四个小球放入编号为1,2,3,4的四个盒子中,每个盒子放一个小球,全部放完.
(1)求编号为奇数的小球放入到编号为奇数的盒子中的概率;
(2)当一个小球放到其中一个盒子时,若球的编号与盒子的编号相同时,称该球是“放对”的,否则称该球是“放错”的,求至多有2个球“放对”的概率.

查看答案和解析>>

同步练习册答案