精英家教网 > 高中数学 > 题目详情
已知抛物线y2=4x的焦点为F,准线与x轴的交点为M,N为抛物线上的一点,且|NF|=
1
2
|MN|
,则∠NMF=(  )
A、45°B、30°
C、75°D、60°
分析:过N作NE垂直于准线与E,由抛物线的定义得|NE|=|NF|;在RT△ENM中求出∠EMN=30°.即可得到结论.
解答:解:过N作NE垂直于准线与E.精英家教网
由抛物线的定义得:|NE|=|NF|.
在RT△ENM中因为|EN|=|NF|=
1
2
|MN|.
所以:∠EMN=30°.
故:∠NMF=90°-∠EMN=60°.
故选D.
点评:本题主要考查抛物线的简单性质.解决问题的关键在于利用抛物线的定义得到|NE|=|NF|.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=4x的焦点为F,其准线与x轴交于点M,过M作斜率为k的直线与抛物线交于A、B两点,弦AB的中点为P,AB的垂直平分线与x轴交于点E(x0,0).
(1)求k的取值范围;
(2)求证:x0>3;
(3)△PEF能否成为以EF为底的等腰三角形?若能,求此k的值;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线
y
2
 
=4x
的焦点为F,过点A(4,4)作直线l:x=-1垂线,垂足为M,则∠MAF的平分线所在直线的方程为
x-2y+4=0
x-2y+4=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x,焦点为F,顶点为O,点P(m,n)在抛物线上移动,Q是OP的中点,M是FQ的中点.
(1)求点M的轨迹方程.
(2)求
nm+3
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x与直线2x+y-4=0相交于A、B两点,抛物线的焦点为F,那么|
FA
|+|
FB
|
=
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x,其焦点为F,P是抛物线上一点,定点A(6,3),则|PA|+|PF|的最小值是
7
7

查看答案和解析>>

同步练习册答案