【题目】设抛物线
的焦点为
,准线为
.已知点
在抛物线
上,点
在
上,
是边长为4的等边三角形.
(1)求
的值;
(2)若直线
是过定点
的一条直线,且与抛物线
交于
两点,过
作
的垂
线与抛物线
交于
两点,求四边形
面积的最小值.
科目:高中数学 来源: 题型:
【题目】某高校共有10000人,其中男生7500人,女生2500人,为调查该校学生每则平均体育运动时间的情况,采用分层抽样的方法,收集200位学生每周平均体育运动时间的样本数据(单位:小时).调查部分结果如下
列联表:
男生 | 女生 | 总计 | |
每周平均体育运动时间不超过4小时 | 35 | ||
每周平均体育运动时间超过4小时 | 30 | ||
总计 | 200 |
(1)完成上述每周平均体育运动时间与性别的
列联表,并判断是否有
把握认为“该校学生的每周平均体育运动时间与性别有关”;
(2)已知在被调查的男生中,有5名数学系的学生,其中有2名学生每周平均体育运动时间超过4小时,现从这5名学生中随机抽取2人,求恰有1人“每周平均体育运动时间超过4小时”的概率.
附:
,其中
.
| 0.10 | 0.05 | 0.010 | 0.005 |
| 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
在平面直角坐标系
中,曲线
的参数方程是
(
为参数,
),在以坐标原点为极点,
轴的正半轴为极轴的极坐标系中,曲线
的极坐标方程是
,等边
的顶点都在
上,且点
,
,
依逆时针次序排列,点
的极坐标为
.
(1)求点
,
,
的直角坐标;
(2)设
为
上任意一点,求点
到直线
距离的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列五个命题:
①函数f(x)=2a2x-1-1的图象过定点(
,-1);
②已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x(x+1),若f(a)=-2则实数a=-1或2.
③若loga
>1,则a的取值范围是(
,1);
④若对于任意x∈R都f(x)=f(4-x)成立,则f(x)图象关于直线x=2对称;
⑤对于函数f(x)=lnx,其定义域内任意x1≠x2都满足f(
)≥![]()
其中所有正确命题的序号是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以原点
为极点,以
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,
.
(1)当
时,判断曲线
与曲线
的位置关系;
(2)当曲线
上有且只有一点到曲线
的距离等于
时,求曲线
上到曲线
距离为
的点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)在复数范围内解方程
(
为虚数单位)
(2)设
是虚数,
是实数,且![]()
(i)求
的值及
的实部的取值范围;
(ii)设
,求证:
为纯虚数;
(iii)在(ii)的条件下求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中错误的个数是( )
①若直线
平面
,直线
,则
;②若直线l和平面
内的无数条直线垂直,则直线l与平面
必相交;③过平面
外一点有且只有一条直线和平面
垂直;④过直线
外一点有且只有一个平面和直线a垂直
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=-
x3+x2+(m2-1)x(x∈R),其中m>0.
(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线斜率;
(2)求函数的单调区间与极值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com