【题目】已知向量
,
,且
,f(x)=
﹣2λ|
|(λ为常数), 求:
(1)
及|
|;
(2)若f(x)的最小值是
,求实数λ的值.
【答案】
(1)解:
,
,
∵
,
∴cosx≥0,
∴ ![]()
(2)解:f(x)=cos2x﹣4λcosx=2(cosx﹣λ)2﹣1﹣2λ2,
∵
,
∴0≤cosx≤1,
①当λ<0时,当且仅当cosx=0时,f(x)取得最小值﹣1,这与已知矛盾;
②当0≤λ≤1,当且仅当cosx=λ时,f(x)取得最小值﹣1﹣2λ2,
由已知得
,解得
;
③当λ>1时,当且仅当cosx=1时,f(x)取得最小值1﹣4λ,
由已知得
,解得
,这与λ>1相矛盾、
综上所述,
为所求
【解析】(1)根据所给的向量的坐标,写出两个向量的数量积,写出数量积的表示式,利用三角函数变换,把数量积整理成最简形式,再求两个向量和的模长,根据角的范围,写出两个向量的模长.(2)根据第一问做出的结果,写出函数的表达式,式子中带有字母系数λ,把式子整理成关于cosx的二次函数形式,结合λ的取值范围,写出函数式的最小值,是它的最小值等于已知量,得到λ的值,把不合题意的舍去.
【考点精析】掌握三角函数的最值是解答本题的根本,需要知道函数
,当
时,取得最小值为
;当
时,取得最大值为
,则
,
,
.
科目:高中数学 来源: 题型:
【题目】某公司为了准确地把握市场,做好产品生产计划,对过去四年的数据进行整理得到了第
年与年销量
(单位:万件)之间的关系如表:
| 1 | 2 | 3 | 4 |
| 12 | 28 | 42 | 56 |
![]()
(Ⅰ)在图中画出表中数据的散点图;
(Ⅱ)根据(Ⅰ)中的散点图拟合
与
的回归模型,并用相关系数甲乙说明;
(Ⅲ)建立
关于
的回归方程,预测第5年的销售量约为多少?.
附注:参考数据:
,
,
.
参考公式:相关系数
,
回归方程
中斜率和截距的最小二乘法估计公式分别为:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究小组在电脑上进行人工降雨模拟实验,准备用A、B、C三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其实验统计结果如下
方式 | 实施地点 | 大雨 | 中雨 | 小雨 | 模拟实验次数 |
A | 甲 | 2次 | 6次 | 4次 | 12次 |
B | 乙 | 3次 | 6次 | 3次 | 12次 |
C | 丙 | 2次 | 2次 | 8次 | 12次 |
假定对甲、乙、丙三地实施的人工降雨彼此互不影响,且不考虑洪涝灾害,请根据统计数据:
(1)求甲、乙、丙三地都恰为中雨的概率;
(2)考虑不同地区的干旱程度,当雨量达到理想状态时,能缓解旱情,若甲、丙地需中雨或大雨即达到理想状态,乙地必须是大雨才达到理想状态,记“甲、乙、丙三地中缓解旱情的个数”为随机变量
,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:
、
、
是同一平面上的三个向量,其中
=(1,2).
(1)若|
|=2
,且
∥
,求
的坐标.
(2)若|
|=
,且
+2
与2
﹣
垂直,求
与
的夹角θ
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|3≤3x≤27},
.
(1)分别求A∩B,(RB)∪A;
(2)已知集合C={x|1<x<a},若CA,求实数a的取值集合.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com