精英家教网 > 高中数学 > 题目详情
设函数
(Ⅰ)求f(x)的单调区间;
(Ⅱ)如果对任何x≥0,都有f(x)≤ax,求a的取值范围.
【答案】分析:(1)先确定函数的定义域然后求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间.
(2)令g(x)=ax-f(x),根据导数研究单调性的方法,即转化成研究对任何x≥0,都有g(x)≥0恒成立,再利用分类讨论的方法求出a的范围.
解答:解:(Ⅰ).(2分)
(k∈Z)时,,即f'(x)>0;
(k∈Z)时,,即f'(x)<0.
因此f(x)在每一个区间(k∈Z)是增函数,f(x)在每一个区间(k∈Z)是减函数.(6分)
(Ⅱ)令g(x)=ax-f(x),则==
故当时,g'(x)≥0.
又g(0)=0,所以当x≥0时,g(x)≥g(0)=0,即f(x)≤ax.(9分)
时,令h(x)=sinx-3ax,则h'(x)=cosx-3a.
故当x∈[0,arccos3a)时,h'(x)>0.
因此h(x)在[0,arccos3a)上单调增加.
故当x∈(0,arccos3a)时,h(x)>h(0)=0,
即sinx>3ax.
于是,当x∈(0,arccos3a)时,
当a≤0时,有
因此,a的取值范围是.(12分)
点评:本小题主要考查函数的导数、单调性、不等式等基础知识,考查综合利用数学知识分析问题、解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年广东省湛江二中高二(上)期中数学试卷(解析版) 题型:解答题

设函数
(1)求f(x)的最小正周期;
(2)记△ABC的内角A,B,C的对边分别为a,b,c,若,求b值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省本溪一中高三(上)第二次月考数学试卷(文科)(解析版) 题型:解答题

设函数
(1)求f(x)的最小正周期;
(2)记△ABC的内角A,B,C的对边分别为a,b,c,若,求b值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省临沂市临沭一中高二(上)10月月考数学试卷(理科)(解析版) 题型:解答题

设函数
(1)求f(x)的最大值及周期;
(2)若锐角α满足,求的值.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖南省衡阳八中高三(上)第五次月考数学试卷(理科)(解析版) 题型:解答题

设函数
(1)求f(x)的周期以及单调增区间;
(2)当时,求sin2x.

查看答案和解析>>

科目:高中数学 来源:2007年浙江省杭州市高考数学一模试卷(文科)(解析版) 题型:解答题

已知函数f(x)=-x2+4,设函数
(1)求F(x)表达式;
(2)解不等式1≤F(x)≤2;
(3)设mn<0,m+n>0,判断F(m)+F(n)能否小于0?

查看答案和解析>>

同步练习册答案