£¨2013•ÉîÛÚһ죩ÒÑÖªf(x)=x-
a
x
(a£¾0)
£¬g£¨x£©=2lnx+bx£¬ÇÒÖ±Ïßy=2x-2ÓëÇúÏßy=g£¨x£©ÏàÇУ®
£¨1£©Èô¶Ô[1£¬+¡Þ£©ÄÚµÄÒ»ÇÐʵÊýx£¬²»µÈʽf£¨x£©¡Ýg£¨x£©ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨2£©µ±a=1ʱ£¬Çó×î´óµÄÕýÕûÊýk£¬Ê¹µÃ¶Ô[e£¬3]£¨e=2.71828¡­ÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£©ÄÚµÄÈÎÒâk¸öʵÊýx1£¬x2£¬¡­£¬xk¶¼ÓÐf£¨x1£©+f£¨x2£©+¡­+f£¨xk-1£©¡Ü16g£¨xk£©³ÉÁ¢£»
£¨3£©ÇóÖ¤£º
n
i=1
4i
4i2-1
£¾ln(2n+1)(n¡ÊN*)
£®
·ÖÎö£º£¨1£©Ê×ÏÈÉè³öÖ±Ïßy=2x-2ÓëÇúÏßy=g£¨x£©µÄÇе㣬°ÑÇеã´úÈëÁ½ÇúÏß·½³ÌºóÁªÁ¢¿ÉÇóµÃbµÄÖµ£¬½â³ög£¨x£©ºó°Ñf£¨x£©ºÍg£¨x£©µÄ½âÎöʽ´úÈëf£¨x£©¡Ýg£¨x£©£¬·ÖÀë±äÁ¿aºó¶Ôº¯Êý½øÐÐÁ½´ÎÇ󵼵õ½º¯ÊýÔÚÇø¼ä[1£¬+¡Þ£©ÄÚµÄ×îСֵ£¬ÔòʵÊýaµÄ·¶Î§¿ÉÇó£»
£¨2£©µ±a=1ʱ¿ÉÖ¤µÃº¯Êýf£¨x£©ÔÚ[e£¬3]ÉÏΪÔöº¯Êý£¬¶øg£¨x£©Ò²ÊÇÔöº¯Êý£¬°Ñ²»µÈʽ×ó±ß·Å´óÈ¡×î´óÖµ£¬ÓÒ±ßÈ¡×îСֵ£¬´úÈëºó¼´¿ÉÇó½â×î´óµÄÕýÕûÊýk£»
£¨3£©¸ÃÃüÌâÊÇÓë×ÔÈ»ÊýÓйصIJ»µÈʽ£¬²ÉÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£¬ÓɹéÄɼÙÉèÖ¤Ã÷n=k+1³ÉÁ¢Ê±£¬´©²åÔËÓ÷ÖÎö·¨£®
½â´ð£º½â£º£¨1£©Éèµã£¨x0£¬y0£©ÎªÖ±Ïßy=2x-2ÓëÇúÏßy=g£¨x£©µÄÇе㣬ÔòÓÐ2lnx0+bx0=2x0-2¢Ù
¡ßg¡ä(x)=
2
x
+b
£¬¡à
2
x0
+b=2
¢Ú
Óɢڵã¬2x0-2=bx0£¬´úÈë¢ÙµÃx0=1£¬ËùÒÔb=0£¬Ôòg£¨x£©=2lnx£®
ÓÉf£¨x£©¡Ýg£¨x£©£¬¼´x-
a
x
¡Ý2lnx
£¬ÕûÀíµÃ
a
x
¡Üx-2lnx
£¬
¡ßx¡Ý1£¬¡àҪʹ²»µÈʽf£¨x£©¡Ýg£¨x£©ºã³ÉÁ¢£¬±ØÐëa¡Üx2-2xlnxºã³ÉÁ¢£®
Éèh£¨x£©=x2-2xlnx£¬h¡ä(x)=2x-2(lnx+x•
1
x
)=2x-2lnx-2
£¬
¡ßh¡å(x)=2-
2
x
£¬¡àµ±x¡Ý1ʱ£¬h''£¨x£©¡Ý0£¬Ôòh'£¨x£©ÊÇÔöº¯Êý£¬
¡àh'£¨x£©¡Ýh'£¨1£©=0£¬¡àh£¨x£©ÊÇÔöº¯Êý£¬Ôòh£¨x£©¡Ýh£¨1£©=1£¬¡àa¡Ü1£®
ÓÖa£¾0£¬Òò´Ë£¬ÊµÊýaµÄȡֵ·¶Î§ÊÇ0£¼a¡Ü1£® 
£¨2£©µ±a=1ʱ£¬f(x)=x-
1
x
£¬¡ßf¡ä(x)=1+
1
x2
£¾0
£¬¡àf£¨x£©ÔÚ[e£¬3]ÉÏÊÇÔöº¯Êý£¬
f£¨x£©ÔÚ[e£¬3]ÉϵÄ×î´óֵΪf(3)=
8
3
£®
Òª¶Ô[e£¬3]ÄÚµÄÈÎÒâk¸öʵÊýx1£¬x2£¬¡­£¬xk£¬¶¼ÓÐf£¨x1£©+f£¨x2£©+¡­+f£¨xk-1£©¡Ü16g£¨xk£©³ÉÁ¢£¬
±ØÐëʹµÃ²»µÈʽ×ó±ßµÄ×î´óֵСÓÚ»òµÈÓÚÓұߵÄ×îСֵ£¬¡ßµ±x1=x2=¡­=xk-1=3ʱ²»µÈʽ×ó±ßÈ¡µÃ×î´óÖµ£¬
xk=eʱ²»µÈʽÓÒ±ßÈ¡µÃ×îСֵ£®¡à£¨k-1£©f£¨3£©¡Ü16g£¨3£©£¬¼´(k-1)¡Á
8
3
¡Ü16¡Á2
£¬½âµÃk¡Ü13£®
Òò´Ë£¬kµÄ×î´óֵΪ13£®         
£¨3£©Ö¤Ã÷£º1¡ãµ±n=1ʱ£¬×ó±ß=
4
3
£¬ÓÒ±ß=ln3£¬
¸ù¾Ý£¨1£©µÄÍÆµ¼ÓУ¬x¡Ê£¨1£¬+¡Þ£©Ê±£¬f£¨x£©£¾g£¨x£©£¬¼´x-
1
x
£¾2lnx
£®
Áîx=3£¬µÃ3-
1
3
£¾2ln3
£¬¼´
4
3
£¾ln3
£®
Òò´Ë£¬n=1ʱ²»µÈʽ³ÉÁ¢£®   
2¡ã¼ÙÉèµ±n=kʱ²»µÈʽ³ÉÁ¢£¬¼´
k
i=1
4i
4i2-1
£¾ln(2k+1)
£¬
Ôòµ±n=k+1ʱ£¬
k+1
i=1
4i
4i2-1
=
k
i=1
4i
4i2-1
+
4(k+1)
4(k+1)2-1
£¾ln(2k+1)+
4(k+1)
4(k+1)2-1
£¬
ÒªÖ¤n=k+1ʱÃüÌâ³ÉÁ¢£¬¼´Ö¤ln(2k+1)+
4(k+1)
4(k+1)2-1
£¾ln(2k+3)
£¬
¼´Ö¤
4(k+1)
4(k+1)2-1
£¾ln
2k+3
2k+1
£®
ÔÚ²»µÈʽx-
1
x
£¾2lnx
ÖУ¬Áîx=
2k+3
2k+1
£¬µÃln
2k+3
2k+1
£¼
1
2
(
2k+3
2k+1
-
2k+1
2k+3
)=
4(k+1)
4(k+1)2-1
£®
¡àn=k+1ʱÃüÌâÒ²³ÉÁ¢£®    
×ÛÉÏËùÊö£¬²»µÈʽ
n
i=1
4i
4i2-1
£¾ln(2n+1)
¶ÔÒ»ÇÐn¡ÊN*³ÉÁ¢£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éº¯ÊýµÄÐÔÖÊ¡¢µ¼ÊýÔËËã·¨Ôò¡¢µ¼ÊýµÄ¼¸ºÎÒâÒå¼°ÆäÓ¦Óᢲ»µÈʽµÄÇó½âÓëÖ¤Ã÷¡¢Êýѧ¹éÄÉ·¨µÈ×ÛºÏ֪ʶ£¬¿¼²éѧÉúµÄ¼ÆËãÍÆÀíÄÜÁ¦¼°·ÖÎöÎÊÌâ¡¢½â¾öÎÊÌâµÄÄÜÁ¦¼°´´ÐÂÒâʶ£¬ÊôÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÉîÛÚһ죩ÒÑÖªº¯Êýf£¨x£©=ax+x2-xlna-b£¨a£¬b¡ÊR£¬a£¾1£©£¬eÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£®
£¨1£©ÊÔÅжϺ¯Êýf£¨x£©ÔÚÇø¼ä£¨0£¬+¡Þ£©Éϵĵ¥µ÷ÐÔ£»
£¨2£©µ±a=e£¬b=4ʱ£¬ÇóÕûÊýkµÄÖµ£¬Ê¹µÃº¯Êýf£¨x£©ÔÚÇø¼ä£¨k£¬k+1£©ÉÏ´æÔÚÁãµã£»
£¨3£©Èô´æÔÚx1£¬x2¡Ê[-1£¬1]£¬Ê¹µÃ|f£¨x1£©-f£¨x2£©|¡Ýe-1£¬ÊÔÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÉîÛÚһ죩£¨×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÔÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®ÇúÏßC1µÄ²ÎÊý·½³ÌΪ
x=
t
y=t+1.
£¨tΪ²ÎÊý£©£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñsin¦È-¦Ñcos¦È=3£¬ÔòC1ÓëC2½»µãÔÚÖ±½Ç×ø±êϵÖеÄ×ø±êΪ
£¨2£¬5£©
£¨2£¬5£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÉîÛÚһ죩Éèf£¨x£©Îª¶¨ÒåÔÚRÉÏµÄÆæº¯Êý£¬µ±x£¾0ʱ£¬f£¨x£©=log3£¨1+x£©£¬Ôòf£¨-2£©=£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÉîÛÚһ죩ÒÑÖªº¯Êýf(x)=2sin(
¦Ðx
6
+
¦Ð
3
)(0¡Üx¡Ü5)
£¬µãA¡¢B·Ö±ðÊǺ¯Êýy=f£¨x£©Í¼ÏóÉϵÄ×î¸ßµãºÍ×îµÍµã£®
£¨1£©ÇóµãA¡¢BµÄ×ø±êÒÔ¼°
OA
OB
掙术
£¨2£©ÉèµãA¡¢B·Ö±ðÔڽǦÁ¡¢¦ÂµÄÖÕ±ßÉÏ£¬Çótan£¨¦Á-2¦Â£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÉîÛÚһ죩ÒÑÖªÊýÁÐ{an}Âú×㣺a1=1£¬a2=a£¨a¡Ù0£©£¬an+2=p•
an+12
an
£¨ÆäÖÐpΪ·ÇÁã³£Êý£¬n¡ÊN*£©£®
£¨1£©ÅжÏÊýÁÐ{
an+1
an
}
ÊDz»ÊǵȱÈÊýÁУ¿
£¨2£©Çóan£»
£¨3£©µ±a=1ʱ£¬Áîbn=
nan+2
an
£¬SnΪÊýÁÐ{bn}µÄǰnÏîºÍ£¬ÇóSn£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸