精英家教网 > 高中数学 > 题目详情
(2008•黄冈模拟)若函数f(x)=lnx,g(x)=x-
2x

(Ⅰ)求函数?(x)=g(x)+kf(x)(k∈R)的单调区间
(Ⅱ)若对所有的x∈[3,+∞)都有xf(x)≥ax-a成立,求实数a的取值范围.
分析:(Ⅰ)先求出函数的定义域,求出导函数?′(x)=
x2+kx+2
x2

因为x2>0,讨论△的正负即可得到?′(x)的正负,即可得到函数的单调区间.
(Ⅱ)由xf(x)≥ax-a解出
 a≤
xlnx
x-1
,设h(x)=
 
xlnx
x-1
,所以求出h′(x),
讨论h(x)的增减性得到h(x)的最小值.让a小于等于最小值即可得到a的范围.
解答:解:(Ⅰ)?(x)的定义域为(0,+∞)…(12分)
?′(x)=1+
2
x2
+
k
x
=
x2+kx+2
x2
…(2分)
△=k2-8
①当△=k2-8≤0时,即-2
2
≤k≤2
2
时,?′(x)≥0
…(3分)
△=k2-8>0时,即k>2
2
或k<-2
2

方程x2+kx+2=0有两个不等实根x1=
-k-
k2-8
2
x2=
-k+
k2-8
2

若k>2
2
,则x1x2<0,故?′(x)>0
…(4分)
若k<-2
2
,则0<x1x2
当0<x<x1时,?′(x)>0;当x1<x<x2时,?′(x)<0;

当x2<x时,?'(x)>0…(5分)
综上:当k<-2
2
时,?(x)的单调递增区间为(0,
-k-
k2-8
2
)及(
-k+
k2-8
2
,+∞)

单调递减区间为[
-k-
k2-8
2
-k+
k2-8
2
]
当k≥-2
2
时,?(x)
的单调递增区间(0,+∞)…(6分)
(Ⅱ)∵x≥e
 ∴xlnx≥ax-a?a≤
xlnx
x-1
…(7分)
令h(x)=
xlnx
x-1
,x∈[e,+∞)
…(8分)
h′(x)=
x-lnx-1
(x-1)2
…(9分)
∵当x≥e时,(x-lnx-1)=1-
1
x
>0
∴x-lnx-1≥e-lne-1=e-2>0
∴h'(x)>0…(10分)
h(x)min=h(e)=
e
e-1
…(11分)∴a≤
e
e-1
…(12分)
另解:xf(x)≥ax-a?xlnx-ax+a≥0
令h(x)=xlnx-ax+a,
则当x∈[e,+∞)时,h(x)min≥0…(7分)
h'(x)=lnx+1-a,由h'(x)=0得x=ea-1…(8分)
且当0<x<ea-1时h'(x)<0,当x>ea-1时h'(x)>0
∴h(x)在(0,ea-1)单减,在(ea-1,+∞)单增…(9分)
①当a≤2时,ea-1≤e
h(x)在(e,+∞)单增,
∴h(x)min=h(e)=e-ae+a≥0

a≤
e
e-1
…(11分)
②当a>2时,由h(e)≥0⇒e+a≥ae若2<a<e,
则e+a<2e<ae,若a≥e,则e+a≤2a<ae,
故a>2不成立
综上所述a≤
e
e-1
…(12分)
点评:考查学生会分区间讨论导函数的正负得到函数的增减性,会利用导数求闭区间上函数的最值.学生做题时应掌握不等式恒成立是所取的条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•黄冈模拟)在四棱锥P-ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD,且PA=2AB
(1)求证:平面PAC⊥平面PBD;
(2)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•黄冈模拟)已知等式(1+x-x23•(1-2x24=a0+a1x+a2x2+…+a14x14成立,则a1+a2+a3+…+a13+a14的值等于
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•黄冈模拟)不等式|x|•(1-3x)>0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•黄冈模拟)已知直线x+y-1=0与椭圆
x2
a2
+
y2
b2
=1
(a>b>0)相交于A、B两点,M是线段AB上的一点,
AM
=-
BM
,且点M在直线l:y=
1
2
x
上,
(1)求椭圆的离心率;
(2)若椭圆的焦点关于直线l的对称点在单位圆x2+y2=1上,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•黄冈模拟)若全集U=R,集合A={x|1-x<0},B={x|x2-2x≤0},则A∩B=(  )

查看答案和解析>>

同步练习册答案