(本小题满分15分)
已知以点
为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点。
(Ⅰ)求证:△AOB的面积为定值;
(Ⅱ)设直线2x+y-4=0与圆C交于点M、N,若
,求圆C的方程;
(Ⅲ)在(Ⅱ)的条件下,设P、Q分别是直线l:x+y+2=0和圆C的动点,求
的最小值及此时点P的坐标。
(Ⅰ)
为定值。
(Ⅱ)圆C的方程为
(Ⅲ)
的最小值为
,直线
的方程为
,则直线
与直线x+y+2=0的交点P的坐标为![]()
【解析】解:(Ⅰ)由题设知,圆C的方程为
,化简得
,当y=0时,x=0或2t,则
;当x=0时,y=0或
,则
,
∴
为定值。 ……………5分
(II)∵
,则原点O在MN的中垂线上,设MN的中点为H,则CH⊥MN,∴C、H、O三点共线,则直线OC的斜率
,∴t=2或t=-2
∴圆心C(2,1)或C(-2,-1)∴圆C的方程为
或
,由于当圆方程为
时,直线2x+y-4=0到圆心的距离d>r,此时不满足直线与圆相交,故舍去。
∴圆C的方程为
……………10分
(Ⅲ)点B(0,2)关于直线x+y+2=0的对称点为
,则
,又
到圆上点Q的最短距离为
。
所以
的最小值为
,直线
的方程为
,则直线
与直线x+y+2=0的交点P的坐标为
……………15分
科目:高中数学 来源:2012-2013学年福建省高三上学期期中理科数学试卷(解析版) 题型:解答题
(本小题满分15分)
已知函数![]()
(Ⅰ)求函数
的单调区间;
(Ⅱ)若
,试分别解答以下两小题.
(ⅰ)若不等式
对任意的
恒成立,求实数
的取值范围;
(ⅱ)若
是两个不相等的正数,且
,求证:
.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省高三下学期3月联考理科数学 题型:解答题
(本小题满分15分).
已知
、
分别为椭圆
:
的
上、下焦点,其中
也是抛物线
:
的焦点,
点
是
与
在第二象限的交点,且
。
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点P(1,3)和圆
:
,过点P的动直线
与圆
相交于不同的两点A,B,在线段AB取一点Q,满足:
,
(
且
)。求证:点Q总在某定直线上。
![]()
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省高三上学期第三次月考数学文卷 题型:解答题
(本小题满分15分)
如图已知,椭圆
的左、右焦点分别为
、
,过
的直线
与椭圆相交于A、B两点。
(Ⅰ)若
,且
,求椭圆的离心率;
(Ⅱ)若
求
的最大值和最小值。
![]()
查看答案和解析>>
科目:高中数学 来源:2014届浙江省宁波市高一上学期期末考试数学 题型:解答题
(本小题满分15分)若函数
在定义域内存在区间
,满足
在
上的值域为
,则称这样的函数
为“优美函数”.
(Ⅰ)判断函数
是否为“优美函数”?若是,求出
;若不是,说明理由;
(Ⅱ)若函数
为“优美函数”,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011年江苏省高二下学期期中考试理数 题型:解答题
(本小题满分15分)在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题.求:
(1)第1次抽到理科题的概率;
(2)第1次和第2次都抽到理科题的概率;
(3)在第1次抽到理科题的条件下,第2次抽到文科题的概率
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com