精英家教网 > 高中数学 > 题目详情

【题目】正四棱柱中,中点,中点.

(1)证明:平面

(2)若直线与平面所成的角为,求的长.

【答案】(1)见证明;(2)2

【解析】

1 法一,取中点G,连接EGGF,BF,证明EBFG为平行四边形,EGBF,即可证明; 法二,以为原点,的方向分别为轴,轴,轴的正方向建立空间直角坐标系,求平面的一个法向量,证明即可(2)由a即可

1 法一,取中点G,连接EG, GF,BF,GFGF=,同理EBEB=,故EBFG,EB=FG,EBFG为平行四边形,则EGBF, 平面,所以平面

法二:以为原点,的方向分别为轴,轴,轴的正方向建立空间直角坐标系

,则

设平面的法向量

,得

,得平面的一个法向量

平面,所以平面

2 ,则

解得,即的长为2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了研究学生的数学核心素养与抽象能力(指标)、推理能力(指标)、建模能力(指标)的相关性,将它们各自量化为1、2、3三个等级,再用综合指标的值评定学生的数学核心素养,若则数学核心素养为一级;若,则数学核心素养为二级;若,则数学核心素养为三级,为了了解某校学生的数学核心素养,调查人员随机访问了某校10名学生,得到如下数据

学生编号

(1)在这10名学生中任取两人,求这两人的建模能力指标相同条件下综合指标值也相同的概率;

(2)在这10名学生中任取三人,其中数学核心素养等级是一级的学生人数记为求随机变量的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一年级共有名学生,其中男生名,女生名,该校组织了一次口语模拟考试(满分为分).为研究这次口语考试成绩为高分是否与性别有关,现按性别采用分层抽样抽取名学生的成绩,按从低到高分成七组,并绘制成如图所示的频率分布直方图.已知的频率等于的频率,的频率与的频率之比为,成绩高于分的为“高分”.

(1)估计该校高一年级学生在口语考试中,成绩为“高分”的人数;

(2)请你根据已知条件将下列列联表补充完整,并判断是否有的把握认为“该校高一年级学生在本次口语考试中成绩及格(分以上(含分)为及格)与性别有关”?

口语成绩及格

口语成绩不及格

合计

男生

女生

合计

附临界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(1)当时,解不等式

(2)若关于的不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数,,当时,,则不等式的解集为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面平面.

(1)求证:平面

(2)求二面角的正弦值;

(3)在棱上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为, 当时,, 则函数在区间上的所有零点的和为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知AB为圆O的直径,且AB=4,点D为线段AB上一点,且,点C为圆O上一点,且.点P在圆O所在平面上的正投影为点D,PD=DB.

(1)求证:CD⊥平面PAB;

(2)求直线PC与平面PAB所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》第47条规定:机动车行经人行横道时,应当减速慢行;遇到行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”.下表是某十字路口监控设备所抓拍的6个月内驾驶员不“礼让斑马线”行为的统计数据:

月份

1

2

3

4

5

6

不“礼让斑马线”驾驶员人数

120

105

100

85

90

80

(Ⅰ)请根据表中所给前5个月的数据,求不“礼让斑马线”的驾驶员人数与月份之间的回归直线方程

(Ⅱ)若该十字路口某月不“礼让斑马线”驾驶员人数的实际人数与预测人数之差小于5,则称该十字路口“礼让斑马线”情况达到“理想状态”.试根据(Ⅰ)中的回归直线方程,判断6月份该十字路口“礼让斑马线”情况是否达到“理想状态”?

(Ⅲ)若从表中3、4月份分别选取4人和2人,再从所选取的6人中任意抽取2人进行交规调查,求抽取的两人恰好来自同一月份的概率.

参考公式: .

查看答案和解析>>

同步练习册答案