精英家教网 > 高中数学 > 题目详情
如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=2,BC=CD=1,AA1=1,F在棱AB(不含端点)上,且C1F与底面ABCD所成角的大小为45°
(Ⅰ)证明:直线D1B1⊥平面FCC1
(Ⅱ)求二面角B-FC1-C的大小.

【答案】分析:(Ⅰ)构造DM⊥CD,则以DM为x轴,DC为y轴,DD1为z轴建立空间直角坐标系,欲证直线D1B1⊥平面FCC1,只需证明 垂直,且垂直即可;
(Ⅱ)在(Ⅰ)所建立的空间直角坐标系中,平面FCC1的法向量已求得,而平面BFC1的法向量可设出后由其与 垂直得到,此时求出两法向量的夹角余弦值,则易得二面角B-FC1-C的余弦值.
解答:证明:(Ⅰ)因为AB=4,BC=CD=2,F是棱AB的中点,
以DM为x轴,DC为y轴,DD1为z轴建立空间直角坐标系,
则D(0,0,0),D1(0,0,1),B1,1),
=(,0),
B(,0),C(0,1,0),C1(0,1,1),F(,0),
=(0,0,1),=(,-,0)
=0,且=0
垂直,且垂直
即D1B1⊥CC1且D1B1⊥C1F
又∵CC1∩C1F=C1
故直线D1B1⊥平面FCC1
(Ⅱ)由(I)可知平面FCC1的一个法向量=(,0),
设平面BFC1的法向量为
=(,-,0)
所以



所以
由图可知二面角B-FC1-C为锐角,所以二面角B-FC1-C的余弦值为
点评:本题考查的知识点是用空间向量求平面间的夹角,直线与平面垂直的判定,其中建立适当的坐标系,将空间问题转化为向量问题,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

18、如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分别是棱AD,AA1的中点,F为AB的中点.证明:
(1)EE1∥平面FCC1
(2)平面D1AC⊥平面BB1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

18、如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分别是棱AD,AA1的中点.
(1)设F是棱AB的中点,证明:直线EE1∥平面FCC1
(2)证明:平面D1AC⊥平面BB1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

15、如图,在直四棱柱ABCD-A1B1C1D1中,A1C1⊥B1D1,E,F分别是AB,BC的中点.
(1)求证:EF∥平面A1BC1
(2)求证:平面D1DBB1⊥平面A1BC1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1,F分别是棱AD,AA1,AB的中点.
(1)证明:直线EE1∥平面FCC1
(2)求二面角B-FC1-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•抚州模拟)如图,在直四棱柱ABCD-A1B1C1D1中,AB=BC,∠ABC=60°,BB1=BC=2,M为BC中点,点N在CC1上.
(1)试确定点N的位置,使AB1⊥MN;
(2)当AB1⊥MN时,求二面角M-AB1-N的正切值.

查看答案和解析>>

同步练习册答案