【题目】我们定义渐近线:已知曲线C,如果存在一条直线,当曲线C上任意一点M沿曲线运动时,M可无限趋近于该直线但永远达不到,那么这条直线称为这条曲线的渐近线:下列函数:①y=
;②y=2x﹣1;③y=lg(x﹣1);④y=
;其中有渐近线的函数的个数为( )
A.1
B.2
C.3
D.4
科目:高中数学 来源: 题型:
【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共
个,生产一个卫兵需
分钟,生产一个骑兵需
分钟,生产一个伞兵需
分钟,已知总生产时间不超过
小时,若生产一个卫兵可获利润
元,生产一个骑兵可获利润
元,生产一个伞兵可获利润
元.
(1)用每天生产的卫兵个数
与骑兵个数
表示每天的利润
(元);
(2)怎么分配生产任务才能使每天的利润最大,最大利润是多少?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.
(Ⅰ)求a,b的值;
(Ⅱ)讨论f(x)的单调性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶
元,售价每瓶
元,未售出的酸奶降价处理,以每瓶
元的价格当天全部处理完。据往年销售经验,每天需求量与当天最高气温(单位:
)有关,如果最高气温不低于
,需求量为
瓶;如果最高气温位于区间
,需求量为
瓶;如果最高气温低于
,需求量为
瓶,为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温 |
|
|
|
|
|
|
天数 |
|
|
|
|
|
|
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量不超过
瓶的概率;
(2)设六月份一天销售这种酸奶的利润为
(单位:元),若该超市在六月份每天的进货量均为
瓶,写出
的所有可能值,并估计
大于零的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x+alnx在x=1处的切线与直线x+2y=0垂直,函数g(x)=f(x)+
x2﹣bx.
(1)求实数a的值;
(2)若函数g(x)存在单调递减区间,求实数b的取值范围;
(3)设x1 , x2(x1<x2)是函数g(x)的两个极值点,若b≥
,求g(x1)﹣g(x2)的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(题文)(12分)设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f′(x)的图象关于直线x=﹣
对称,且f′(1)=0
(Ⅰ)求实数a,b的值
(Ⅱ)求函数f(x)的极值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log2x+
,若x1∈(1,2),x2∈(2,+∞),则( )
A.f(x1)<0,f(x2)<0
B.f(x1)<0,f(x2)>0
C.f(x1)>0,f(x2)<0
D.f(x1)>0,f(x2)>0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,已知点A(a,a),B(2,3),C(3,2).
(1)若向量
,
的夹角为钝角,求实数a的取值范围;
(2)若a=1,点P(x,y)在△ABC三边围成的区域(含边界)上,
=m
+n
(m,n∈R),求m﹣n的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com