精英家教网 > 高中数学 > 题目详情
如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”.给出下列函数:
①f(x)=sinxcosx;②f(x)=2sin(x+
π
4
);③f(x)=sinx+
3
cosx;  ④f(x)=
2
sin2x+1.
其中“同簇函数”的是(  )
A.①②B.①④C.②③D.③④
∵构成“同簇函数”的两个函数图象经过平移后能够重合,
∴能构成“同簇函数”的两个函数的图象形状和大小都相同,可得它们的周期和振幅必定相同
因此,将各个函数化简整理,得
①f(x)=sinxcosx=
1
2
sin2x,周期为π,振幅是
1
2

②f(x)=2sin(x+
π
4
)的周期为2π,振幅为2;
③f(x)=sinx+
3
cosx=2(sinxcos
π
3
+cosxsin
π
3
)=2sin(x+
π
3
),周期为2π,振幅为2;
④f(x)=
2
sin2x+1的周期为π,振幅为
2

由此可得,②③的两个函数的周期和振幅都相同,它们是“同簇函数”
故选:C
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果若干个函数的图象经过平移后能够重合,则称这些函数“互为生成”函数,给出下列函数:
①f(x)=sinx-cosx,
②f(x)=
2
(sinx+cosx),
③f(x)=
2
sinx+2,
④f(x)=sinx,其中互为生成的函数是(  )
A、①②B、①③C、③④D、②④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济南三模)如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”.给出下列函数:
①f(x)=sinxcosx;②f(x)=2sin(x+
π
4
);③f(x)=sinx+
3
cosx;  ④f(x)=
2
sin2x+1.
其中“同簇函数”的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”.给出下列函数:
①f(x)=sinxcosx;
②f(x)=2sin(x+
π
4
);
③f(x)=sinx+
3
cosx;
④f(x)=
2
sin2x+1.
其中“同簇函数”的是
②③
②③

查看答案和解析>>

科目:高中数学 来源: 题型:

如果若干个函数的图象经过平移后能够重合,则这些函数为“互为生成”函数,给出下列函数,其中与f(x)=sinx-cosx构成“互为生成”函数的为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”.给出下列函数:
①f(x)=sinxcosx; 
②f(x)=
2
sin2x+1;
③f(x)=2sin(x+
π
4
);       
④f(x)=sinx+
3
cosx.
其中“同簇函数”的是(  )
A、①②B、①④C、②③D、③④

查看答案和解析>>

同步练习册答案