精英家教网 > 高中数学 > 题目详情

【题目】5名运动员参加一次乒乓球比赛,每名运动员都赛场并决出胜负.设第位运动员共胜场,负场(),则错误的结论是( )

A.

B.

C. 为定值,与各场比赛的结果无关

D. 为定值,与各场比赛结果无关

【答案】D

【解析】

根据题意,对每个选项逐一分析即可得解。

由题意得,所有胜的场数为10场,所以负的场数为10场。

选项A,根据已知,所有胜的场数和与所有负的场数和是相等的,所以,即A选项正确。

选项B,假设5名运动员胜的场数分别为0,1,2,3,4,则负的场数分别为4,3,2,1,0,所以,即选项B正确。

选项C=10,为定值,且与比赛结果无关,即选项C正确。

选项D,不一定为定值,胜的场数可以0,1,2,3,4,也可以为1,1,1,3,4,故不一定为定值,所以选项D错误,故选D。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列命题:

①命题,则的否命题为,则

的必要不充分条件;

命题,使得的否定是:,均有

④命题,则的逆否命题为真命题

其中所有正确命题的序号是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】雾霾大气严重影响人们的生活,某科技公司拟投资开发新型节能环保产品,策划部制定投资计划时,不仅要考虑可能获得的盈利,而且还要考虑可能出现的亏损,经过市场调查,公司打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为,可能的最大亏损率分别为,投资人计划投资金额不超过9万元,要求确保可能的资金亏损不超过万元.

若投资人用x万元投资甲项目,y万元投资乙项目,试写出xy所满足的条件,并在直角坐标系内作出表示xy范围的图形.

根据的规划,投资公司对甲、乙两个项目分别投资多少万元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.

学生序号

1

2

3

4

5

6

7

8

9

10

立定跳远(单位:米)

1.96

1.92

1.82

1.80

1.78

1.76

1.74

1.72

1.68

1.60

30秒跳绳(单位:次)

63

a

75

60

63

72

70

a1

b

65

在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则

A2号学生进入30秒跳绳决赛

B5号学生进入30秒跳绳决赛

C8号学生进入30秒跳绳决赛

D9号学生进入30秒跳绳决赛

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题10分)选修4—4:坐标系与参数方程

已知曲线C1的参数方程为t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ

)把C1的参数方程化为极坐标方程;

)求C1C2交点的极坐标(ρ≥0,0≤θ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是平行四边形,,侧面底面,, 分别为的中点,点在线段上.

(Ⅰ)求证:直线平面

(Ⅱ)若的中点,求平面与平面所成锐二面角的余弦值;

(Ⅲ)设,当为何值时,直线与平面所成角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是正方形,每条侧棱的长都是底面边长的倍,为侧棱上的点.

(1)求证:

(2)若平面,求二面角的大小;

(3)在(2)的条件下,侧棱上是否存在一点,使得平面.若存在,求的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年10月28日,重庆公交车坠江事件震惊全国,也引发了广大群众的思考——如何做一个文明的乘客.全国各地大部分社区组织居民学习了文明乘车规范.社区委员会针对居民的学习结果进行了相关的问卷调查,并将得到的分数整理成如图所示的统计图.

(1)求得分在上的频率;

(2)求社区居民问卷调查的平均得分的估计值;(同一组中的数据以这组数据所在区间中点的值作代表)

(3)由于部分居民认为此项学习不具有必要性,社区委员会对社区居民的学习态度作调查,所得结果统计如下:(表中数据单位:人)

认为此项学习十分必要

认为此项学习不必要

50岁以上

400

600

50岁及50岁以下

800

200

根据上述数据,计算是否有的把握认为居民的学习态度与年龄相关.

附:,其中.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为 为参数),以原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的公共点为.

求直线的斜率;

Ⅱ)若点分别为曲线上的动点,当取最大值时,求四边形的面积.

查看答案和解析>>

同步练习册答案