精英家教网 > 高中数学 > 题目详情

【题目】椭圆中心为坐标原点O,对称轴为坐标轴,且过M2 N(,1)两点,

I)求椭圆的方程;

II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点A,B,?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。

【答案】1 2

【解析】试题分析:(Ⅰ)由椭圆的离心率及过点过M2 N(,1)列出方程组求出,由此能求出椭圆的方程.
(2)假设存在这样的圆,设该圆的切线为与椭圆联立,得 由此利用根的判别式、韦达定理、圆的性质,结合已知条件能求出的取值范围.

试题解析:1

2假设存在这样的圆,设该圆的切线为y=kx+m,与联立消y(1+2k2)x2+4kmx+2m2﹣8=0

当△=16k2m2﹣4(1+2k2)(2m2﹣8)=8(8k2﹣m2+4)>0

因为所以

所以3m2﹣8k2﹣8=0,由△=16k2m2﹣4(1+2k2)(2m2﹣8)=8(8k2﹣m2+4)>0 得

△=16k2m2﹣4(1+2k2)(2m2﹣8)=8(8k2﹣m2+4)>0

代入化简得

又y=kx+m与圆心在原点的圆相切,所以所求圆 直线AB斜率不存在时也满足.

,当

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若曲线在点处的切线经过点(0,1),求实数的值;

(Ⅱ)求证:当时,函数至多有一个极值点;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着智能手机的普及,使用手机上网成为了人们日常生活的一部分,很多消费者对手机流量的需求越来越大.长沙某通信公司为了更好地满足消费者对流量的需求,准备推出一款流量包.该通信公司选了5个城市(总人数、经济发展情况、消费能力等方面比较接近)采用不同的定价方案作为试点,经过一个月的统计,发现该流量包的定价:(单位:元/月)和购买人数(单位:万人)的关系如表:

(1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合的关系?并指出是正相关还是负相关;

(2)①求出关于的回归方程;

②若该通信公司在一个类似于试点的城市中将这款流量包的价格定位25元/ 月,请用所求回归方程预测长沙市一个月内购买该流量包的人数能否超过20 万人.

参考数据:.

参考公式:相关系数,回归直线方程

其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,.

(1)当为何值时,直线是曲线的切线;

(2)若不等式上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在圆上任取一点,过点轴的垂线段为垂足.当点在圆上运动时,线段的中点形成轨迹

1)求轨迹的方程;

2)若直线与曲线交于两点,为曲线上一动点,求面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96106],样本数据分组为[9698),[98100),[100102)[102104),[104106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( ).

A. 90B. 75C. 60D. 45

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的右焦点为,右顶点为.已知,其中为原点, 为椭圆的离心率.

1)求椭圆的方程及离心率的值;

2)设过点的直线与椭圆交于点不在轴上),垂直于的直线与交于点,与轴交于点.,且,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数的导数(e为自然对数的底数).

I.时,求曲线在点()处的切线方程;

II.若当时,不等式恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案