【题目】先后2次抛掷一次骰子,将得到的点数分别记为
.
(1)求直线
与圆
相切的概率;
(2)将
,4的值分别作为三条线段的长,求这三条线段能围成等腰三角形(含等边三角形)的概率.
【答案】(1)
(2)
.
【解析】
本题考查的知识点是古典概型,我们要列出一枚骰子连掷两次先后出现的点数所有的情况个数
(1)再求出满足条件直线
与圆
相切的事件个数,然后代入古典概型公式即可求解;
(2)再求出满足条件
,
,4的值分别作为三条线段的长,求这三条线段能围成等腰三角形的事件个数,然后代入古典概型公式即可求解.
解:(1)总的事件的个数为:![]()
∵直线
与圆
相切
,![]()
又![]()
∴满足条件的只有
这种情况.
∴直线
与圆
相切的概率是
.
(2)∵等腰三角形而边长为4
∴当
时,
,即
共1种;
当
时,
,即
共1种;
当
时,
,即
共2种;
当
时,
,即
,
,
,
,
,
共6种;
当
时,
,即
共2种;
当
时,
,即
共2种;
∴满足条件的不同情况共有14种.
∴三条线段能围成不同的等腰三角形的概率为
.
科目:高中数学 来源: 题型:
【题目】如图,某小区中央广场由两部分组成,一部分是边长为
的正方形
,另一部分是以
为直径的半圆,其圆心为
.规划修建的
条直道
,
,
将广场分割为
个区域:Ⅰ、Ⅲ、Ⅴ为绿化区域(图中阴影部分),Ⅱ、Ⅳ、Ⅵ为休闲区域,其中点
在半圆弧上,
分别与
,
相交于点
,
.(道路宽度忽略不计)
![]()
(1)若
经过圆心,求点
到
的距离;
(2)设
,
.
①试用
表示
的长度;
②当
为何值时,绿化区域面积之和最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学为了解高一学生的视力健康状况,在高一年级体检活动中采用统一的标准对数视力表,按照《中国学生体质健康监测工作手册》的方法对1039名学生进行了视力检测,判断标准为:双眼裸眼视力
为视力正常,
为视力低下,其中
为轻度,
为中度,
为重度.统计检测结果后得到如图所示的柱状图.
![]()
(1)求该校高一年级轻度近视患病率;
(2)根据保护视力的需要,需通知检查结果为“重度近视”学生的家长带孩子去医院眼科进一步检查和确诊,并开展相应的矫治,则该校高一年级需通知的家长人数约为多少人?
(3)若某班级6名学生中有2人为视力正常,则从这6名学生中任选2人,恰有1人视力正常的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知抛物线
的顶点在坐标原点,焦点在x轴上,且过点(2,4),圆
,过圆心
的直线l与抛物线和圆分别交于P,Q,M,N,则
的最小值为________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数据
是宜昌市
个普通职工的年收入,设这
个数据的中位数为
,平均数为
,方差为
,如果再加上世界首富的年收入
,则这
个数据中,下列说法正确的是( )
A. 年收入平均数可能不变,中位数可能不变,方差可能不变
B. 年收入平均数大大增大,中位数可能不变,方差变大
C. 年收入平均数大大增大,中位数可能不变,方差也不变
D. 年收入平均数大大增大,中位数一定变大,方差可能不变
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的个数是( )
①设某大学的女生体重
与身高
具有线性相关关系,根据一组样本数据
,用最小二乘法建立的线性回归方程为
,则若该大学某女生身高增加
,则其体重约增加
;
②关于
的方程
的两根可分别作为椭圆和双曲线的离心率;
③过定圆
上一定点
作圆的动弦
,
为原点,若
,则动点
的轨迹为椭圆;
④已知
是椭圆
的左焦点,设动点
在椭圆上,若直线
的斜率大于
,则直线
(
为原点)的斜率的取值范围是
.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com