在平面直角坐标系
中,曲线
的参数方程为
(
为参数),曲线
的参数方程为
(
为参数).在以
为极点,
轴的正半轴为极轴的极坐标系中,射线
与
,
各有一个交点.当
时,这两个交点间的距离为
,当
时,这两个交点重合.
(Ⅰ)分别说明
,
是什么曲线,并求出a与b的值;
(Ⅱ)设当
时,
与
,
的交点分别为
,当
时,
与
,
的交点分别为
,求四边形
的面积.
(Ⅰ)C1是圆,C2是椭圆; (Ⅱ)四边形A1A2B2B1的面积为![]()
解析试题分析:(Ⅰ)根据圆和椭圆的参数方程特征可以判断出C1是圆,C2是椭圆;然后还原到直角坐标系中,根据
即表示的x轴的非负半轴,根据
表示的是y轴的非负半轴可以分别求出a=3和b=1;
(Ⅱ)先分别求出在直角坐标系下的方程:C1:
,C2:
然后再求出第一象限的角平分线与C1,C2的交点坐标和第四象限与C1,C2交点坐标,根据坐标判断出四边形A1A2B2B1为梯形,然后求得面积.
试题解析:(Ⅰ)C1是圆,C2是椭圆.
当
时,射线l与C1,C2交点的直角坐标分别为(1,0),(a,0),因为这两点间的距离为2,所以a=3.
当
时,射线l与C1,C2交点的直角坐标分别为(0,1),(0,b),因为这两点重合,所以b=1.
(Ⅱ)C1,C2在平面直角标系下的方程分别为![]()
当
时,射线l与C1交点A1的横坐标为
,与C2交点B1的横坐标为![]()
当
时,射线l与C1,C2的两个交点A2,B2分别与A1,B1关于x轴对称,因此四边形A1A2B2B1为梯形.
故四边形A1A2B2B1的面积为![]()
考点:1.圆的参数方程;2.椭圆的参数方程;3.直线的极坐标方程.
科目:高中数学 来源: 题型:解答题
已知曲线C1的参数方程为
(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知在直角坐标系
中,曲线
的参数方程为
为参数).在极坐标系(与直角坐标取相同的长度单位,且以原点
为极点,
轴的非负半轴为极轴)中,曲线
的方程为
.
(Ⅰ)求曲线
直角坐标方程;
(Ⅱ)若曲线
、
交于A、B两点,定点
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系
中,曲线
的参数方程为
(
为参数),若以直角坐标系的原点
为极点,
轴的正半轴为极轴建立极坐标,曲线
的极坐标方程为
(其中
为常数).
(1)若曲线
与曲线
只有一个公共点,求
的取值范围;
(2)当
时,求曲线
上的点与曲线
上的点的最小距离
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动点
,Q都在曲线C:
(β为参数)上,对应参数分别为![]()
与
(0<
<2π),M为PQ的中点。
(Ⅰ)求M的轨迹的参数方程
(Ⅱ)将M到坐标原点的距离d表示为
的函数,并判断M的轨迹是否过坐标原点。
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
(坐标系与参数方程选做题) 已知直线
方程是![]()
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,圆
的极坐标方程为
,则圆
上的点到直线
的距离最小值是
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com