已知向量
和
,
(1)设
,写出函数
的最小正周期;并求函数
的单调区间;
(2)若
,求
的最大值.
(1)
;(2)
.
【解析】
试题分析:(1)根据平面向量数量积的运算求出
,最小正周期即是
,根据图像的平移变换的规律写出函数
经过怎样的变化到已知函数
的;(2)先根据已给的向量坐标化简
,得到式子
,根据三角函数在定区间上的取值判断
值域所在的区间,即是
的取值集合,找到最大值.
试题解析:(1)由已知得
,
所以函数
的最小正周期为
. 3分
将函数
的图像依次进行下列变换:把函数
的图像向左平移
,得到函数
的图像;把函数
的图像上各点纵坐标伸长到原来的
倍(横坐标不变),得到函数
即
的图像;
6分
(2)
,
所以![]()
![]()
![]()
,
因为
,所以
,则
,
所以
,即
的范围是
. 11分
当
时,
的最大值为
.
12分
考点:1、三角函数的最小正周期;2、三角函数图像的平移变换;3、三角函数在定区间上的最值;4、求平面向量的模;5、三角函数的恒等变换.
科目:高中数学 来源: 题型:
| m |
| n |
| m |
| 3π |
| 4 |
| m |
| 2 |
| m |
| n |
| n |
| n |
| q |
| π |
| 2 |
| p |
| C |
| 2 |
| n |
| p |
查看答案和解析>>
科目:高中数学 来源: 题型:
| a |
| b |
| m |
| a |
| b |
| π |
| 4 |
| m |
| a |
| b |
| a |
| b |
| m |
| π |
| 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| a |
| b |
| a |
| b |
| OE |
| b |
查看答案和解析>>
科目:高中数学 来源:2014届江西省新课程高三上学期第二次适应性测试理科数学试卷(解析版) 题型:解答题
已知向量
和
,
(1)设
,写出函数
的最小正周期,并指出该函数的图像可由
的图像经过怎样的平移和伸缩变换得到?
(2)若
,求
的范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com