精英家教网 > 高中数学 > 题目详情
已知f(x),g(x)是定义在R上的函数,f(x)=axg(x)(a>0且a≠1),,在有穷数列(n=1,2…,10)中,任意取正整数k(1≤k≤10),则前k项和大于的概率是( )
A.
B.
C.
D.
【答案】分析:由已知可得,代入已知条件可求a及,代入等比数列的和公式可求Sk,令,求出符合条件的k值,利用古典概率模型求解概率.
解答:解:由已知可得,
,解得

从1,2,3…10中任取一个值有10种结果.
记“前k项和大于”为事件A,则

=

∴k>4,又因为k为正整数,k=5,6,7,8,9,10共6种结果
P(A)=
故选:B.
点评:数列问题常与函数问题综合考查,在具体问题中以函数为载体,要善于构造特殊数列,得到{}是等比数列是解决本题的关键,借助等比数列的和考查了古典概率,是一个综合了函数、数列、概率的试题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f(x)=axg(x),f′(x)g(x)<f(x)g′(x),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,在有穷数列{
f(n)
g(n)
},(n=1,2,…,10)
中任取前k项相加,则前k项和大于
15
16
的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f(x)g'(x)>f'(x)g(x),f(x)=ax•g(x),(a>0且a≠1)
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,令an=
f(n)
g(n)
,则使数列{an}的前n项和Sn超过
15
16
的最小自然数n的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f(x)g′(x)>f′(x)g(x),且f(x)=axg(x)(a>0且a≠1,
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,对于有穷数列
f(n)
g(n)
=(n=1,2,…0)
,任取正整数k(1≤k≤10),则前k项和大于
15 
16
的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x),g(x)都是定义在R上的函数,且f(x)=g(x)ax(a>0且a≠1),f′(x)g(x)<f(x)g′(x),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,则a的值为
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=2log2(1-x)
(1)求f(x)及g(x)的解析式,并指出其单调性(无需证明).
(2)求使f(x)<0的x取值范围.
(3)设h-1(x)是h(x)=log2x的反函数,若存在唯一的x使
1-h-1(x)1+h-1(x)
=m-2x
成立,求m的取值范围.

查看答案和解析>>

同步练习册答案