已知:如图,在四棱锥
中,四边形
为正方形,
,且
,
为
中点.
(Ⅰ)证明:
//平面
;
(Ⅱ)证明:平面
平面
;
(Ⅲ)求二面角
的正弦值.
![]()
(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)![]()
【解析】
试题分析:(Ⅰ)
![]()
证明:连结BD交AC于点O,连结EO. ……1分
O为BD中点,E为PD中点,
∴EO//PB. ……2分
EO
平面AEC,PB
平面AEC, ……3分
∴ PB//平面AEC.
(Ⅱ)
![]()
证明:
PA⊥平面ABCD.
平面ABCD,
∴
.
……4分
又
在正方形ABCD中
且
,
……5分
∴CD
平面PAD.
……6分
又![]()
平面PCD,
∴平面
平面
.
……7分
(Ⅲ)如图,以A为坐标原点,
所在直线分别为
轴,
轴,
轴建立空
间直角坐标系.
……8分
由PA=AB=2可知A、B、C、D、P、E的坐标分别为
A(0, 0, 0), B(2, 0, 0),C(2, 2, 0),
D(0, 2, 0), P(0, 0, 2), E(0, 1, 1) . ……9分
PA
平面ABCD,∴
是平面ABCD的法向量,
=(0, 0, 2).
设平面AEC的法向量为
,
,
则
即
∴![]()
∴令
,则
.
……11分
∴
, ……12分
二面角
的正弦值为
. ……13分
考点:本小题主要考查线面平行和面面垂直的证明和二面角的求法,考查学生的空间想象能力和运算求解能力.
点评:证明线面平行和面面垂直时,要紧扣定理要求的条件,缺一不可,用向量求二面角时,要注意所求的二面角时锐角还是钝角.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源:2014届山东省高二上学期期末模块调研理科数学试卷(解析版) 题型:解答题
(本小题满分12分)
已知:如图,在四棱锥
中,四边形
为正方形,
,且
,
为
中点.
![]()
(1)证明:
//平面
;
(2)证明:平面
平面
;
(3)求二面角
的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com