已知二次函数
,及函数
。
关于
的不等式
的解集为
,其中
为正常数。
(1)求
的值;
(2)
R
如何取值时,函数![]()
![]()
存在极值点,并求出极值点;
(3)若
,且![]()
,求证:
。
科目:高中数学 来源: 题型:解答题
某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙,地面利用原地面均不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,屋顶每平方米造价20元.
(1)仓库面积
的最大允许值是多少?
(2)为使面积
达到最大而实际投入又不超过预算,正面铁栅应设计为多长?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
将边长为
米的一块正方形铁皮的四角各截去一个大小相同的小正方形,然后将四边折起做成一个无盖的方盒.欲使所得的方盒有最大容积,截去的小正方形的边长应为多少米?方盒的最大容积为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数
,
是定义域为R上的奇函数.
(1)求
的值,并证明当
时,函数
是R上的增函数;
(2)已知
,函数
,
,求
的值域;
(3)若
,试问是否存在正整数
,使得
对
恒成立?若存在,请求出所有的正整数
;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本
(元)与月处理量
(吨)之间的函数关系可近似的表示为:
,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
经市场调查:生产某产品需投入年固定成本为3万元,每生产
万件,需另投入流动成本为
万元,在年产量不足8万件时,
(万元),在年产量不小于8万件时,
(万元). 通过市场分析,每件产品售价为5元时,生产的商品能当年全部售完.
(1)写出年利润
(万元)关于年产量
(万件)的函数解析式;
(注:年利润=年销售收入
固定成本
流动成本)
(2)年产量为多少万件时,在这一商品的生产中所获利润最大?最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com