精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax3x2-a2x(a>0),存在实数x1、x2满足下列条件:①x1<x2;②f??(x1)=f??(x2)=0;③|x1|+|x2|=2.

证明:0<a??3;

求b的取值范围;

若函数h(x)=f??(x)-6a(x-x1),证明:当x1<x<2时,|h(x)|??12a.

(1)证明见解析。

       (2)0??b??12

       (3)证明见解析。


解析:

(Ⅰ)f??(x)=3ax2+2x-a2, ∴x1+x2=-,x1x2=-,由a>0,得x1<0<x2,

∵|x1|+|x2|=2,∴x2-x1=2.

故-x1和x2是方程t2-2t+=0的两个实根, ∴方程有解, ∴D=4-??0,得0<a??3.  4分

(Ⅱ)由(x1+x2)2-4x1x2=4得=4, ∴b=-3a3+9a2, ∴b??=-9a2+18a,由b??=0得a=0或a=2.又0<a??3, ∴当a变化时,b??,b的变化情况如下表:

a

0

(0,2)

2

(2,3)

3

b??

0

b

0

??

极大值12

??

0

∴0??b??12                                              4分

(Ⅳ)∵x1<x<2, ∴x-x1>0,x-x2-2<0,

又h(x)=3a(x-x1)(x-x2)-6a(x-x1)=3a(x-x1)[(x-x2)-2],

∴|h(x)|=|3a(x-x1)[(x-x2)-2]|=

3a|x-x1||x-x2-2|??3a·()2

=3a·()2

又x2-x1=2,∴|h(x)|??12a                             4分

练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年江西省南昌市高一5月联考数学卷(解析版) 题型:解答题

已知函数f(x)= (a、b为常数),且方程f(x)-x+12=0有两个实根为x1=3,x2=4.

(1)求函数f(x)的解析式;

(2)设k>1,解关于x的不等式f(x)< .

 

查看答案和解析>>

科目:高中数学 来源:2015届辽宁盘锦市高一第一次阶段考试数学试卷(解析版) 题型:解答题

(12分)已知函数f(x)= (a,b为常数,且a≠0),满足f(2)=1,方程f(x)=x有唯一实数解,求函数f(x)的解析式和f[f(-4)]的值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省莱芜市高三上学期10月测试理科数学 题型:解答题

(本小题满分l2分)

已知函数f(x)=a

 

(1)求证:函数yf(x)在(0,+∞)上是增函数;

 

(2)f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围.

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省十二校高三第一次联考数学文卷 题型:解答题

( (本小题满分13分)

已知函数f(x)=(a-1)xaln(x-2),(a<1).

(1)讨论函数f(x)的单调性;

(2)设a<0时,对任意x1x2∈(2,+∞),<-4恒成立,求a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2014届黑龙江省高一期末考试文科数学 题型:解答题

(12分)已知函数f(X)=㏒a(ax-1) (a>0且a≠1)

     (1)求函数的定义域   (2)讨论函数f(X)的单调性

 

查看答案和解析>>

同步练习册答案