精英家教网 > 高中数学 > 题目详情
已知实数a≠0,函数f(x)=
2x+a,x<1
-x-2a,x≥1
,若f(1-a)=f(1+a),求a的值.
分析:分a>0,a<0两种情况进行讨论,可表示出该方程,然后解一次方程即可.
解答:解:(1)当a>0时,1-a<1,1+a>1,
这时有f(1-a)=2(1-a)+a=2-a,f(1+a)=-(1+a)-2a=-1-3a,
由f(1-a)=f(1+a),得2-a=-1-3a,a=-
3
2
<0,不成立;
(2)当a<0时,1-a>1,1+a<1,
这时有f(1-a)=-(1-a)-2a=-1-a,f(1+a)=2(1+a)+a=2+3a,
由f(1-a)=f(1+a),得-1-a=2+3a,a=-
3
4
符合题意;
∴所求a的值为-
3
4
点评:本题考查分段函数求值,考查一次方程的求解,考查分类讨论思想,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数a≠0,函数f(x)=ax(x-2)2(x∈R)有极大值32,则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a≠0,函数f(x)=ax(x-2)2(x∈R)
(Ⅰ)若函数f(x)有极大值32,求实数a的值;
(Ⅱ)若对于x∈[-2,1],不等式f(x)<
329
恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a≤0,函数f(x)=|x|(x-a).
(I)讨论f(x)在R上的奇偶性;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)求函数f(x)在闭区间[-1,
12
]的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a≠0,函数f(x)=a(x-2)2+2lnx,g(x)=f(x)-4a+
1
4a

(1)当a=1时,讨论函数f(x)的单调性;
(2)若f(x)在区间[1,4]上是增函数,求实数a的取值范围;
(3)若当x∈[2,+∞)时,函数g(x)图象上的点均在不等式
x≥2
y≥x
,所表示的平面区域内,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关二模)已知实数a≠0,函数f(x)=
x2+2a, x<1
-x,x≥1
,若f(1-a)≥f(1+a),则实数a的取值范围是(  )

查看答案和解析>>

同步练习册答案