精英家教网 > 高中数学 > 题目详情

已知椭圆的两焦点为数学公式,P为椭圆上一点,且|PF1|+|PF2|=4
(1)求此椭圆方程.
(2)若数学公式,求△F1PF2的面积(要有详细的解题过程)

解:(1)依题意得c=,2a=4,
解得a=2,c=,从而b=1.
故椭圆的方程为
(2)在△F1PF2中,由余弦定理得|F1F2|2=|PF1|2+|PF2|2-2|PF1|•|PF2|cos60°,

又|PF1|+|PF2|=2a=4,平方得|PF1|2+|PF2|2+2|PF1|•|PF2|=16,=2 ②,
②-①得3|PF1|•|PF2|=4,即
∴△F1PF2的面积
,△F1PF2的面积
分析:(1)根据题意可求得a和c,进而根据b,a和c的关系,则b可得,进而求得椭圆的方程.
(2)由余弦定理结合椭圆的定义,经整体运算可求得|PF1|•|PF2|的值,进而求其面积.
点评:本题考查椭圆的简单性质的应用,以及用待定系数法求椭圆的标准方程的方法.还考查直线、圆和椭圆等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.本题将圆锥曲线与三角问题巧妙的交汇在一起,事实上,在椭圆中S=b2tanθ,同理可求得在双曲线中 (其中 ).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的两焦点为F1(-
3
,0), F2(
3
,0)
,P为椭圆上一点,且|PF1|+|PF2|=4
(1)求此椭圆方程.
(2)若F1PF2=
π
3
,求△F1PF2的面积(要有详细的解题过程)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的两焦点为F1(-
3
,0),F2
3
,0),离心率e=
3
2

(1)求此椭圆的方程;
(2)设直线l:y=x+m,若l与此椭圆相交于P,Q两点,且|PQ|等于椭圆的短轴长,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的两焦点为F1(0,-1)、F2(0,1),直线y=4是椭圆的一条准线.
(1)求椭圆方程;
(2)设点P在椭圆上,且|PF1|-|PF2|=1,求tan∠F1PF2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的两焦点为F1(-
3
,0),F2
3
,0),离心率e=
3
2

(Ⅰ)求此椭圆的方程.
(Ⅱ)设直线y=
x
2
+m
与椭圆交于P,Q两点,且|PQ|的长等于椭圆的短轴长,求m的值.
(Ⅲ)若直线y=
x
2
+m
与此椭圆交于M,N两点,求线段MN的中点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的两焦点为F1(-1,0)、F2(1,0),P为椭圆上一点,且2|F1F2|=|PF1|+|PF2|.
(1)求此椭圆的方程;
(2)若点P在第二象限,∠F2F1P=120°,求△PF1F2的面积.

查看答案和解析>>

同步练习册答案