分析:由目标函数z=2x+4y的最小值是-6,我们可以画出满足条件
的可行域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数k的方程组,消参后即可得到k的取值.
解答:解:画出x,y满足的可行域
如下图:

由于目标函数z=2x+4y的最小值是-6,
可得直线x=3与直线-6=2x+4y的交点A(3,-3),
使目标函数z=2x+4y取得最小值,
将x=3,y=-3代入x+y-k=0得:
k=0,
故答案为:0.
点评:如果约束条件中含有参数,我们可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),代入另一条直线方程,消去x,y后,即可求出参数的值.