【题目】给出下列四个命题:
①函数
与函数
表示同一个函数;
②奇函数的图象一定通过直角坐标系的原点;
③函数
的图象可由
的图象向右平移1个单位得到;
④若函数
的定义域为
,则函数
的定义域为
;
⑤设函数
是在区间
上图象连续的函数,且
,则方程
在区间
上至少有一实根.
其中正确命题的序号是________.(填上所有正确命题的序号)
科目:高中数学 来源: 题型:
【题目】直线l的极坐标方程为θ=α(ρ∈R,ρ≠0),其中α∈[0,π),曲线C1的参数方程为
(t为参数),圆C2的普通方程为x2+y2+2
x=0.
(1)求C1,C2的极坐标方程;
(2)若l与C1交于点A,l与C2交于点B,当|AB|=2时,求△ABC2的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】技术员小张对甲、乙两项工作投入时间
(小时)与做这两项工作所得报酬
(百元)的关系式为:
,若这两项工作投入的总时间为120小时,且每项工作至少投入20小时.
(1)试建立小张所得总报酬
(单位:百元)与对乙项工作投入的时间
(单位:小时)的函数关系式,并指明函数定义域;
(2)小张如何计划使用时间,才能使所得报酬最高?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
、
是两条不同的直线,
、
、
是三个不同的平面,则
的一个充分条件是( )
A.存在一条直线
,
,![]()
B.存在一条直线
,
,![]()
C.存在一个平面
,满足
,![]()
D.存在两条异面直线
,
,
,
,
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年12月以来,湖北武汉市发现多起病毒性肺炎病例,并迅速在全国范围内开始传播,专家组认为,本次病毒性肺炎病例的病原体初步判定为新型冠状病毒,该病毒存在人与人之间的传染,可以通过与患者的密切接触进行传染.我们把与患者有过密切接触的人群称为密切接触者,每位密切接触者被感染后即被称为患者.已知每位密切接触者在接触一个患者后被感染的概率为
,某位患者在隔离之前,每天有
位密切接触者,其中被感染的人数为
,假设每位密切接触者不再接触其他患者.
(1)求一天内被感染人数为
的概率
与
、
的关系式和
的数学期望;
(2)该病毒在进入人体后有14天的潜伏期,在这14天的潜伏期内患者无任何症状,为病毒传播的最佳时间,设每位患者在被感染后的第二天又有
位密切接触者,从某一名患者被感染,按第1天算起,第
天新增患者的数学期望记为
.
(i)求数列
的通项公式,并证明数列
为等比数列;
(ii)若戴口罩能降低每位密切接触者患病概率,降低后的患病概率
,当
取最大值时,计算此时
所对应的
值和此时
对应的
值,根据计算结果说明戴口罩的必要性.(取
)
(结果保留整数,参考数据:
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com