【题目】已知圆C过点(1,2)和(2,1),且圆心在直线x+y﹣4=0上.
(Ⅰ)求圆C的方程;
(Ⅱ)若一束光线l自点A(﹣3,3)发出,射到x轴上,被x轴反射到圆C上,若反射点为M(a,0),求实数a的取值范围.
【答案】解:(Ⅰ)设圆心坐标为(x,4﹣x),则(x﹣1)2+(2﹣x)2=(x﹣2)2+(3﹣x)2 ,
∴x=2,
∴C(2,2),
∴圆C的方程C:(x﹣2)2+(y﹣2)2=1;
(Ⅱ)A关于x轴的对称点A′(﹣3,﹣3),设过A′的直线为y+3=k(x+3),
当该直线与⊙C相切时,有
=1,∴k=
或k=![]()
∴过A′,⊙C的两条切线为y+3=
(x+3),y+3=
(x+3),
令y=0,得x1=﹣
,x2=1
∴反射点M在x轴上的范围是[﹣
,1].
【解析】(Ⅰ)求出圆心坐标与半径,即可求圆C的方程;
(Ⅱ)由题意,可知反射线必过定点A′(点是点A关于x轴对称的点),利用几何知识知当反射线与已知圆相切时恰好为范围的临界状态.
【考点精析】解答此题的关键在于理解圆的标准方程的相关知识,掌握圆的标准方程:
;圆心为A(a,b),半径为r的圆的方程.
科目:高中数学 来源: 题型:
【题目】已知函数
,
,其中函数
的图象在点
处的切线平行于
轴.
(1)确定
与
的关系;若
,并试讨论函数
的单调性;
(2)设斜率为
的直线与函数
的图象交于两点
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点
为极点,
轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线
的参数方程为
,(
为参数,
),曲线
的极坐标方程为
.
(1)求曲线
的直角坐标方程;
(2)设直线
与曲线
相交于
,
两点,当
变化时,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数
(1)求k的值;
(2)设g(x)=log4(a2x﹣
a),若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l过点P(0,2),斜率为k,圆Q:x2+y2﹣12x+32=0.
(1)若直线l和圆相切,求直线l的方程;
(2)若直线l和圆交于A、B两个不同的点,问是否存在常数k,使得
+
与
共线?若存在,求出k的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(1﹣x)﹣loga(1+x)(a>0,且a≠1).
(1)求函数f(x)的定义域;
(2)判断f(x)的奇偶性;
(3)求满足不等式f(x)<0的x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com