椭圆
的离心率是
,它被直线
截得的弦长是
,求椭圆的方程.
科目:高中数学 来源: 题型:解答题
已知椭圆
经过点
,且两焦点与短轴的两个端点的连线构成一正方形.
(1)求椭圆
的方程;
(2)直线
与椭圆
交于
,
两点,若线段
的垂直平分线经过点
,求![]()
(
为原点)面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的一个顶点为B(0,4),离心率
,直线
交椭圆于M,N两点。
(1)若直线
的方程为
,求弦MN的长;
(2)如果△BMN的重心恰好为椭圆的右焦点F,求直线
方程的一般式。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,斜率为1的直线过抛物线y2=2px(p>0)的焦点,与抛物线交于两点A,B,M为抛物线弧AB上的动点.![]()
(1)若|AB|=8,求抛物线的方程;
(2)求
的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知点D(0,-2),过点D作抛物线
:
的切线l,切点A在第二象限。![]()
(1)求切点A的纵坐标;
(2)若离心率为
的椭圆
恰好经过A点,设切线l交椭圆的另一点为B,若设切线l,直线OA,OB的斜率为k,
,①试用斜率k表示
②当
取得最大值时求此时椭圆的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为2
,在y轴上截得线段长为2
.
(1)求圆心P的轨迹方程;
(2)若P点到直线y=x的距离为
,求圆P的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设抛物线
的焦点为
,点
,线段
的中点在抛物线上. 设动直线
与抛物线相切于点
,且与抛物线的准线相交于点
,以
为直径的圆记为圆
.
(1)求
的值;
(2)证明:圆
与
轴必有公共点;
(3)在坐标平面上是否存在定点
,使得圆
恒过点
?若存在,求出
的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
给定椭圆C:
+
=1(a>b>0),称圆心在原点O,半径为
的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(
,0),其短轴上的一个端点到F的距离为
.
(1)求椭圆C的方程和其“准圆”的方程.
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线l1,l2使得l1,l2与椭圆C都只有一个交点,且l1,l2分别交其“准圆”于点M,N.
①当P为“准圆”与y轴正半轴的交点时,求l1,l2的方程;
②求证:|MN|为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com