【题目】已知
,函数
.
(1)求证:曲线
在点
处的切线过定点;
(2)若
是
在区间
上的极大值,但不是最大值,求实数
的取值范围;
(3)求证:对任意给定的正数
,总存在
,使得
在
上为单调函数.
【答案】(1)证明见解析;(2)
;(3)证明见解析.
【解析】
试题分析:(1)求出切点坐标及切线方程,切线恒过定点即与参数
无关,令系数为
,可得定点坐标;(2)
,要使
成为极大值,因此
,又
不是最大值,而
在
单增,
单减,
单增,因此
,可求得
的范围;(3)
在
单增,
单减,
单增,又
,所以要使
在
单调,只需
,即
,故存在.
试题解析:解:(1)证明:∵
,∴
∵
,∴曲线
在点
处的切线方程为
,
即
,令
,则
,
故曲线
在点
处的切线过定点
(2)解:
,
令
得
或
∵
是
在区间
上的极大值,∴
,∴![]()
令
,得
或
递增;令
,得
递减,
∵
不是
在区间
上的最大值,
∴
在区间
上的最大值为
,
∴
,∴
,又
,∴
(3)证明:
,
∵
,∴
令
,得
或
递增;令
,得
递减,
∵
,∴![]()
若
在
上为单调函数,则
,即
故对任意给定的正数
,总存在
(其中
),使得
在
上为单调函数
科目:高中数学 来源: 题型:
【题目】设样本x1,x2,…,x10数据的平均值和方差分别为3和5,若yi=xi+a(a为非零实数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为( )
A. 3,5 B. 3+a,5 C. 3+a,5+a D. 3,5+a
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的短轴长为2,且函数
的图象与椭圆
仅有两个公共点,过原点的直线
与椭圆
交于
两点.
(1)求椭圆
的标准方程;
(2)点
为线段
的中垂线与椭圆
的一个公共点,求
面积的最小值,并求此时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从参加高一年级期末考试的学生中抽出60名学生,将其物理成绩(均为整数)分成六段
,
…
后画出如下频率分布直方图.观察图形的信息,回答下列问题:
![]()
(Ⅰ)估计这次考试的众数m与中位数n(结果保留一位小数);
(Ⅱ) 估计这次考试的及格率(60分及以上为及格)和平均分.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了传承经典,促进学生课外阅读,某校从高中年级和初中年级各随机抽取100名学生进行有关对中国四大名著常识了解的竞赛.图1和图2分别是高中年级和初中年级参加竞赛的学生成绩按照
分组,得到的频率分布直方图.
![]()
(1)分别计算参加这次知识竞赛的两个学段的学生的平均成绩;
(2)规定竞赛成绩达到
为优秀,经统计初中年级有3名男同学,2名女同学达到优秀,现从上述5人中任选两人参加复试,求选中的2人恰好都为女生的概率;
(3)完成下列
的列联表,并回答是否有99%的把握认为“两个学段的学生对四大名著的了解有差异”?
![]()
附: ![]()
临界值表:
| 0.10 | 0.05 | 0.01 |
| 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种产品的年销售量
与该年广告费用支出
有关,现收集了4组观测数据列于下表:
| 1 | 4 | 5 | 6 |
| 30 | 40 | 60 | 50 |
现确定以广告费用支出
为解释变量,销售量
为预报变量对这两个变量进行统计分析.
(1)已知这两个变量满足线性相关关系,试建立
与
之间的回归方程;
(2)假如2017年广告费用支出为10万元,请根据你得到的模型,预测该年的销售量
.
(线性回归方程系数公式
).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com