精英家教网 > 高中数学 > 题目详情
(2013•嘉定区一模)设集合A={x|4x-1≥9,x∈R},B={x|
x
x+3
≥0,x∈R},则A∩B=
{x|x≥
5
2
}
{x|x≥
5
2
}
分析:根据题意,解4x-1≥9可得集合A,将
x
x+3
≥0变形可得x(x+3)≥0且x+3≠0,解可得集合B,由交集的定义,计算可得答案.
解答:解:4x-1≥9?x≥
5
2
,则A={x|x≥
5
2
},
x
x+3
≥0?x(x+3)≥0且x+3≠0,
解可得,x<-3或x≥0,
则B={x|x<-3或x≥0};
则A∩B={x|x≥
5
2
};
故答案为{x|x≥
5
2
}.
点评:本题考查集合交集的运算以及分式不等式的解法,解分式不等式时,要注意分式的意义即分母不为0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•嘉定区一模)书架上有3本不同的数学书,2本不同的语文书,2本不同的英语书,将它们任意地排成一排,则左边3本都是数学书的概率为
1
35
1
35
(结果用分数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区一模)若双曲线x2-
y2
k
=1
的焦点到渐近线的距离为2
2
,则实数k的值是
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区一模)如图所示的算法框图,若输出S的值是90,那么在判断框(1)处应填写的条件是
k≤8
k≤8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区一模)如图,在平面直角坐标系xOy中,椭圆
x2
a2
+
y2
b2
=1(a>b>0)被围于由4条直线x=±a,y=±b所围成的矩形ABCD内,任取椭圆上一点P,若
OP
=m•
OA
+n•
OB
(m、n∈R),则m、n满足的一个等式是
m2+n2=
1
2
m2+n2=
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区一模)设等差数列{an}的前n项和为Sn,且a5+a13=34,S3=9.数列{bn}的前n项和为Tn,满足Tn=1-bn
(1)求数列{an}的通项公式;
(2)写出一个正整数m,使得
1
am+9
是数列{bn}的项;
(3)设数列{cn}的通项公式为cn=
an
an+t
,问:是否存在正整数t和k(k≥3),使得c1,c2,ck成等差数列?若存在,请求出所有符合条件的有序整数对(t,k);若不存在,请说明理由.

查看答案和解析>>

同步练习册答案