精英家教网 > 高中数学 > 题目详情
20.在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PA上的一点.
(1)求证:平面PAC⊥平面PCD;
(2)当点E在什么位置时,BE∥平面PCD.

分析 (1)由已知推导出PA⊥CD,AC⊥CD,从而CD⊥平面PAC,由此能证明平面PAC⊥平面PCD.
(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出当E为PA中点时,BE∥平面PCD.

解答 证明:(1)∵PA⊥底面ABCD,CD?平面ABCD,
∴PA⊥CD,
∵AC⊥CD,PA∩AC=A,
∴CD⊥平面PAC,
∵CD?平面PCD,∴平面PAC⊥平面PCD.
解:(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,
设PA=AB=BC=2,∵∠ABC=60°,AC⊥CD,
∴C(1,$\sqrt{3}$,0),D(0,$\frac{4\sqrt{3}}{3}$,0),
B(2,0,0),P(0,0,2),设E(0,0,t),0≤t≤2,
$\overrightarrow{BE}$=(-2,0,t),$\overrightarrow{PC}$=(1,$\sqrt{3}$,-2),$\overrightarrow{PD}$=(0,$\frac{4\sqrt{3}}{3}$,-2),
设平面PDC的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PC}=x+\sqrt{3}y-2z=0}\\{\overrightarrow{n}•\overrightarrow{PD}=\frac{4\sqrt{3}}{3}y-2z=0}\end{array}\right.$,取y=$\sqrt{3}$,得$\overrightarrow{n}$=(1,$\sqrt{3}$,2),
∵BE∥平面PCD,∴$\overrightarrow{BE}•\overrightarrow{n}$=-2+2t=0,解得t=1,
∴当E为PA中点时,BE∥平面PCD.

点评 本题考查面面垂直的证明,考查线面平行时点的位置的确定,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知曲线C上任意一点M满足|MF1|+|MF2|=4,其中F1($0,-\sqrt{3})$,F2($0,\sqrt{3})$,
(Ⅰ)求曲线C的方程;
(Ⅱ)已知直线$l:y=kx+\sqrt{3}$与曲线C交于A,B两点,是否存在实数k使得以线段AB为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知幂函数$f(x)={x^{-2{m^2}+m+3}}$(m∈Z)为偶函数,且在(0,+∞)上是增函数.
(1)求f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0,a≠1)在区间(2,3)上为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若两个三角形的三条边长分别为a、b、c和lga、lgb、lgc,且a、b、c两两不等,试判断这两个三角形是否相似?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,BD=CE,G、H为BC、DE中点,AB=AC,FD=FE,∠BAC=∠DFE.求证:AF∥GH.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列结论中,正确的是(  )
A.2014cm长的有向线段不可能表示单位向量
B.若0是直线l上的一点,单位长度已选定,则l上有且只有两个点A,B,使得$\overrightarrow{OA}$,$\overrightarrow{OB}$是单位向量
C.方向为北偏西50°的向量与南偏东50°的向量不可能是平行向量
D.一人从A点向东走500米到达B点,则$\overrightarrow{AB}$不能表示这个人从A点到B点的位移

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知奇函数f(x)的定义域为实数集R,且f(x)在(-∞,+∞)上是增函数,是否存在这样的实数m,使f(4m-2mcosθ)-f(4-2cos2θ)>f(0)对所有的θ∈[0,$\frac{π}{2}$]均成立?若存在,求出适合条件的实数m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点A(2,5),直线l1:x+1=0,l2:x+y-3=0,根据下列条件,分别求△ABC的边BC所在直线的方程:
(1)11、l2分别是边AB、AC上的高所在直线的方程;
(2)11、l2分别是边AB、AC上的中线所在直线的方程;
(3)11、l2分别是∠B、∠C的角平分线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知0<α<$\frac{π}{2}$,0<β<$\frac{π}{2}$,且,$\frac{sinβ}{sinα}$=cos(α+β),α+β≠$\frac{π}{2}$,则tanβ的最大值为$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

同步练习册答案