精英家教网 > 高中数学 > 题目详情
已知点A(-1,0),B(1,0),动点P满足|PA|+|PB|=2
3
,记动点P的轨迹为W.
(Ⅰ)求W的方程;  
(Ⅱ)直线y=kx+1与曲线W交于不同的两点C,D,若存在点M(m,0),使得|CM|=|DM|成立,求实数m的取值范围.
(Ⅰ)∵|PA|+|PB|=2
3
>|AB|=2
∴由椭圆的定义可知,动点P的轨迹是以A,B为焦点,长轴长为2
3
的椭圆.
∴c=1,a=
3
,b2=2.
∴W的方程是
x2
3
+
y2
2
=1
.          
(Ⅱ)设C,D两点坐标分别为C(x1,y1)、D(x2,y2),C,D中点为N(x0,y0).
y=kx+1
x2
3
+
y2
2
=1
得 (3k2+2)x2+6kx-3=0.
∵△=36k2+12(3k2+2)>0
x1+x2=-
6k
3k2+2

x0=
x1+x2
2
=-
3k
3k2+2
,从而y0=kx0+1=
2
3k2+2

∴线段CD的中垂线的方程为y-y0=-
1
k
(x-x0
即y-
2
3k2+2
=-
1
k
(x+
3k
3k2+2

令y=0,得x=--
k
3k2+2

∵存在点M(m,0),使得|CM|=|DM|
∴m=-
k
3k2+2

当k=0时,m=0
当k>0时,m=-
k
3k2+2
=-
1
3k+
2
k
≥-
1
2
3k×
2
k
=-
6
12

即m∈[-
6
12
,0)

当k<0时,m=-
k
3k2+2
=-
1
3k+
2
k
1
2
-3k×
2
-k
=
6
12

即m∈(0,
6
12
]


∴m∈[-
6
12
,0)∪(0,
6
12
]
∪{0}=[-
6
12
6
12
]

故所求m的取范围是[-
6
12
6
12
]
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知点A(-1,0)与点B(1,0),C是圆x2+y2=1上的动点,连接BC并延长至D,使得|CD|=|BC|,求AC与OD的交点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,0),B(0,2),点P是圆(x-1)2+y2=1上任意一点,则△PAB面积的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,0),B(0,1)和互不相同的点P1,P2,P3,…,Pn,…,满足
OPn
=an
OA
+bn
OB
(n∈N*)
,O为坐标原点,其中an、bn分别为等差数列和等比数列,若P1是线段AB的中点,设等差数列公差为d,等比数列公比为q,当d与q满足条件
 
时,点P1,P2,P3,…,Pn,…共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,0),B(1,0),M是平面上的一动点,过M作直线l:x=4的垂线,垂足为N,且|MN|=2|MB|.
(1)求M点的轨迹C的方程;
(2)当M点在C上移动时,|MN|能否成为|MA|与|MB|的等比中项?若能求出M点的坐标,若不能说明理.

查看答案和解析>>

科目:高中数学 来源: 题型:

点A到图形C上每一个点的距离的最小值称为点A到图形C的距离.已知点A(1,0),圆C:x2+2x+y2=0,那么平面内到圆C的距离与到点A的距离之差为1的点的轨迹是(  )

查看答案和解析>>

同步练习册答案