【题目】如图所示,在三棱锥
中,
平面
,点
是线段
的中点.
![]()
(1)如果
,求证:平面
平面
;
(2)如果
,求直线
和平面
所成的角的余弦值.
科目:高中数学 来源: 题型:
【题目】北京大学从参加逐梦计划自主招生考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组
,
,…,
后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:
(1)求分数在
内的频率;
(2)估计本次考试成绩的中位数(结果四舍五入,保留整数);
(3)用分层抽样的方法在分数段为
的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有
人在分数段
内的概率.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列
的前
项和为
,
.
(
)证明数列
是等比数列,求出数列
的通项公式.
(
)设
,求数列
的前
项和
.
(
)数列
中是否存在三项,它们可以构成等比数列?若存在,求出一组符合条件的项;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(题文)(题文)“你低碳了吗?”这是某市为倡导建设节约型社会而发布的公益广告里的一句话,活动组织者为了了解这则广告的宣传效果,随机抽取了120名年龄在
,
,…,
的市民进行问卷调查,由此得到的样本的频率分布直方图如图所示.
![]()
(1)根据直方图填写频率分布统计表;
(2)根据直方图,试估计受访市民年龄的中位数(保留整数);
(3)如果按分层抽样的方法,在受访市民样本年龄在
中共抽取5名市民,再从这5人中随机选2人作为本次活动的获奖者,求年龄在
和
的受访市民恰好各有一人获奖的概率.
分组 | 频数 | 频率 |
| 18 | 0.15 |
| 30 | |
| ||
| 0.2 | |
| 6 | 0.05 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的上下两个焦点分别为
,过点
与
轴垂直的直线交椭圆
于
两点,
的面积为
,椭圆
的离心率为
.
(1)求椭圆
的标准方程;
(2)已知
为坐标原点,直线
与
轴交于点
,与椭圆
交于
两个不同的点,若
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
.
(1)当
时,求函数
的最大值;
(2)令
,其图象上存在一点
,使此处切线的斜率
,求实数
的取值范围;
(3)当
,
时,方程
有唯一实数解,求正数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
分别是椭圆
的左、右焦点,离心率为
,
分别是椭圆的上、下顶点,
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
交于相异两点
,且满足直线
的斜率之积为
,证明:直线
恒过定点,并采定点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com