精英家教网 > 高中数学 > 题目详情
精英家教网已知长方体ABCD-A1B1C1D1中,M、N分别是BB1和BC的中点,AB=4,AD=2,B1D与平面ABCD所成角的大小为60°,求异面直线B1D与MN所成角的大小(结果用反三角函数值表示).
分析:先求出高B1B,再通过平移将两条异面直线平移到同一个起点B1,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角的余弦值,再用方三角函数值表示即可.
解答:精英家教网解:连接B1C,由M、N分别是BB1和BC的中点,得B1C∥MN,
∴∠DB1C就是异面直线B1D与MN所成的角、
连接BD,在Rt△ABD中,可得BD=2
5
,又BB1⊥平面ABCD,∠B1DB是B1D与平面ABCD所成的角,∴∠B1DB=60°、
在Rt△B1BD中,B1B=BDtan60°=2
15

又DC⊥平面BB1C1C,∴DC⊥B1C,
在Rt△DB1C中,tan∠DB1C=
DC
B1C
=
DC
BC2+B
B
2
1
=
1
2

∴∠DB1C=arctan
1
2

即异面直线B1D与MN所成角的大小为arctan
1
2
点评:本题主要考查了异面直线及其所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知长方体ABCD-A1B1C1D1中,AB=2,BC=4,AA1=4,点M是棱D1C1的中点.
(1)试用反证法证明直线AB1与BC1是异面直线;
(2)求直线AB1与平面DA1M所成的角(结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知长方体ABCD-A1B1C1D1中,DA=DD1=1,DC=
2
,点E是B1C1的中点,点F在AB上,建立空间直角坐标系如图所示.
(1)求
AE
的坐标及长度;
(2)求点F的坐标,使直线DF与AE的夹角为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知长方体ABCD-A1B1C1D1中,M、N分别是BB1和BC的中点,AB=4,AD=2,BB1=2
15
,求异面直线B1D与MN所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知长方体ABCD-A1B1C1D1,AB=BC=1,BB1=2,连接B1C,过B点作B1C.
的垂线交CC1于E,交B1C于F.
(I)求证:A1C⊥平面EBD;
(Ⅱ)求直线DE与平面A1B1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知长方体ABCD-A1B1C1D1,下列向量的数量积一定不为0的是(  )
精英家教网
A、
AD1
B1C
B、
BD1
AC
C、
AB
AD1
D、
BD1
BC

查看答案和解析>>

同步练习册答案