精英家教网 > 高中数学 > 题目详情
(2012•青浦区一模)(
x
-2)6
的展开式中x2的系数为
60
60
.(用数字作答)
分析:利用二项展开式的通项公式,求出x的指数,通过指数为2,求出所求数值.
解答:解:(
x
-2)6
的通项公式为:Tr+1=
C
r
6
(
x
)6-r(-2)r
=
C
r
6
(-2)rx
6-r
2

6-r
2
=2
,得r=2.
可得x2项的系数为C62(-2)2=60,
故答案为:60.
点评:本小题考查二项式展开的项公式,考查计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•青浦区一模)在△ABC中,角A、B、C的对边分别a、b、c,已知a+b=5,c=
7
,且sin22C+sin2C•sinC-2sin2C=0.
(Ⅰ) 求角C的大小;
(Ⅱ) 求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青浦区一模)定义某种新运算⊙:s=a⊙b的运算原理如图流程图所示,则5⊙4-3⊙4=
9
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青浦区一模)已知全集U=R,A={x|x2-3x<0},B={x|x>2},则A∩CUB=
{x|0<x≤2}
{x|0<x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青浦区一模)设集合A={x|
x-1
x-a
≥0
},集合B={x||x-2|>1},且B⊆A,则实数a的取值范围是 (  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青浦区一模)如图:三棱锥P-ABC中,PA⊥底面ABC,若底面ABC是边长为2的正三角形,且PB与底面ABC所成的角为
π3
.若M是BC的中点,求:
(1)三棱锥P-ABC的体积;
(2)异面直线PM与AC所成角的大小(结果用反三角函数值表示).

查看答案和解析>>

同步练习册答案