【题目】如图,在四棱锥P-ABCD中,底面ABCD是菱形,PA=PD,∠DAB=60°.
![]()
(1)证明:AD⊥PB.
(2)若PB=
,AB=PA=2,求三棱锥P-BCD的体积。
【答案】(1)证明见解析;(2)1
【解析】
(1)取AD的中点O, 连接P0,BO,BD,利用三线合一得出BO⊥AD,PO⊥AD,故AD⊥平面PBO,,于是AD⊥PB。(2)利用勾股定理得出PO⊥BO,可得PO⊥平面ABCD,用棱锥的体积公式计算即可
(1)证明:取AD的中点O,连接P0,BO,BD,
∵底面ABCD是等边三角形
∴BO⊥AD,
又∵PA=PD,即ΔPAD等腰三角形,
∴PO⊥AD,
又∵PO
BO=0.
∴AD⊥平面PBO,
又∵PB
平面PBO.
∴AD⊥PB;
![]()
(2)解:AB=PA=2
∴由(1)知ΔPAD是边长为2的正三角形,则PO=
.
又∵PB=
,
∴PO2+BO2=PB2,即PO⊥BO,
又由(1)知,PO⊥AD.且BO
AD=O.
∴PO⊥平面ABCD.
∴![]()
∴三棱锥P-BCD的体积为1.
科目:高中数学 来源: 题型:
【题目】关于函数![]()
(1)
是
的极小值点;
(2)函数
有且只有1个零点;
(3)
恒成立;
(4)设函数
,若存在区间
,使
在
上的值域是
,则
.
上述说法正确的序号为_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AB∥CD,AB⊥AD,PA⊥平面ABCD,E是棱PC上一点.
![]()
(1)证明:平面ADE⊥平面PAB.
(2)若PE=4EC,O为点E在平面PAB上的投影,
,AB=AP=2CD=2,求四棱锥P-ADEO的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的最小正周期为
,其图象关于直线
对称.给出下面四个结论:①将
的图象向右平移
个单位长度后得到函数图象关于原点对称;②点
为
图象的一个对称中心;③
;④
在区间
上单调递增.其中正确的结论为( )
A.①②B.②③C.②④D.①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为抛物线
的焦点,以
为圆心作半径为
的圆
,圆
与
轴的负半轴交于点
,与抛物线
分别交于点
.
(1)若
为直角三角形,求半径
的值;
(2)判断直线
与抛物线
的位置关系,并给出证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
的参数方程为
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求直线
的普通方程和曲线
的直角坐标方程;
(2)设点
,直线
与曲线
交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,左、右焦点分别为
,点
在椭圆
上,
的周长为
.
(1)求椭圆
的方程;
(2)已知直线l经过点
,且与椭圆
交于不同的两点
,若
(
为坐标原点)成等比数列,判断直线
的斜率是否为定值?若是,请求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的长轴长是焦距的2倍,且过点
.
(1)求椭圆C的方程;
(2)设
为椭圆C上的动点,F为椭圆C的右焦点,A、B分别为椭圆C的左、右顶点,点
满足
.
①证明:
为定值;
②设Q是直线
上的动点,直线AQ、BQ分别另交椭圆C于M、N两点,求
的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com