【题目】已知圆C:(x-1)2+(y-2)2=2,过点P(2,-1)作圆C的切线,切点为A,B.
(1)求直线PA,PB的方程;
(2)求过P点的圆C的切线长.
科目:高中数学 来源: 题型:
【题目】设S为复数集C的非空子集.如果
(1)S含有一个不等于0的数;
(2)a,b∈S,a+b,a﹣b,ab∈S;
(3)a,b∈S,且b≠0,
∈S,那么就称S是一个数域.
现有如下命题:
①如果S是一个数域,则0,1∈S;
②如果S是一个数域,那么S含有无限多个数;
③复数集是数域;
④S={a+b
|a,b∈Q,}是数域;
⑤S={a+bi|a,b∈Z}是数域.
其中是真命题的有 (写出所有真命题的序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数,
).在以坐标原点为极点
轴正半轴为极轴的极坐标系中,曲线![]()
(1)说明
是哪一种曲线,并将
的方程化为极坐标方程;
(2)直线
的极坐标方程为
,其中
满足
,若曲线
与
的公共点都在
上,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
+
=1(a>b>0),e=
, 其中F是椭圆的右焦点,焦距为2,直线l与椭圆C交于点A、B,点A,B的中点横坐标为
, 且
=λ
(其中λ>1).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)求实数λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=cos2
,g(x)=1+
sin 2x.
(1)设x=x0是函数y=f(x)图象的一条对称轴,求g(x0)的值.
(2)若函数h(x)=f(x)+g(x)在区间
上的最大值为2,求m的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且满足2Sn+an=1;递增的等差数列{bn}满足b1=1,b3=
﹣4.
(1)求数列{an},{bn}的通项公式;
(2)若cn是an , bn的等比中项,求数列{
}的前n项和Tn;
(3)若c
≤
t2+2t﹣2对一切正整数n恒成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个袋中有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是
;从袋中任意摸出2个球,至少得到1个白球的概率是
.
(Ⅰ)若袋中共有10个球,
(i)求白球的个数;
(ii)从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望Eξ.
(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于
. 并指出袋中哪种颜色的球个数最少.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数),在以坐标原点为极点,
轴的正半轴为极轴的极坐标系中,圆
的方程为
.
(1)求
的普通方程和
的直角坐标方程;
(2)当
时,
与
相交于
,
两点,求
的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com