(本题满分12分)设正项数列
的前
项和
,且满足
.
(Ⅰ)计算
的值,猜想
的通项公式,并证明你的结论;
(Ⅱ)设
是数列
的前
项和,证明:
.
(Ⅰ)
;
;
.猜想
,用数学归纳法证明;(Ⅱ)先利用数列知识求和,然后利用放缩法证明或者利用数学归纳法证明
【解析】
试题分析:(Ⅰ)当n=1时,
,得
;
,得
;
,得
.猜想
2’
证明:(ⅰ)当n=1时,显然成立.
(ⅱ)假设当n=k时,
1’
则当n=k+1时,![]()
结合
,解得
2’
于是对于一切的自然数
,都有
1’
(Ⅱ)证法一:因为
,
3’
.3’
证法二:数学归纳法
证明:(ⅰ)当n=1时,
,
,
1’
(ⅱ)假设当n=k时,
1’
则当n=k+1时,![]()
要证:![]()
只需证:![]()
由于![]()
所以
3’
于是对于一切的自然数
,都有
1’
考点:本题考查了数学归纳法的运用
点评:运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。
科目:高中数学 来源:2014届吉林省吉林市高二上学期期中理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设命题
:实数
满足
, 命题
:实数
满足
.
当
为真,求实数
的取值范围;
查看答案和解析>>
科目:高中数学 来源:2012-2013学年河北省石家庄市高三暑期第二次考试理科数学试卷(解析版) 题型:解答题
(本题满分12分)设函数
.
(1)求函数
的单调区间;
(2)若
对
恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年湖北省高三十一月份阶段性考试理科数学 题型:解答题
(本题满分12分)设函数
,其中
。
(Ⅰ)当
时,求不等式
的解集;
(Ⅱ)若不等式
的解集为
,求a的值。
查看答案和解析>>
科目:高中数学 来源:2010-2011年云南省高二上学期期末数学理卷 题型:解答题
(本题满分12分)
设
,
分别是椭圆
:
的左、右焦点,过
斜率为1的直线
与
相交于
、
两点,且
,
,
成等差数列,
(Ⅰ)求
的离心率;
(Ⅱ)设点
满足
,求
的方程。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com