精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax2-gx(a∈R),f′(x)是f(x)的导函数(g为自然对数的底数)
(Ⅰ)解关于x的不等式:f(x)>f′(x);
(Ⅱ)若f(x)有两个极值点x1,x2,求实数a的取值范围.

解:(Ⅰ)求导数可得f′(x)=2ax-gx,∴f(x)-f′(x)=ax(x-2)…(4分)
原不等式等价于f(x)-f′(x)=ax(x-2)>0,
当a=0时,无解; …(5分)
当a>0时,解集为{x|x<0,或x>2}; …(6分)
当a<0时,解集为{x|0<x<2} …(7分)
(Ⅱ)设g(x)=f′(x)=2ax-gx
则x1,x2是方程g(x)=0的两个根,则g′(x)=2a-gx…(9分)
若a≤0时,g′(x)<0恒成立,g(x)单调递减,方程g(x)=0不可能有两个根…(11分)
若a>0时,由g′(x)=0,得x=ln2a,
当x∈(-∞,ln2a)时,g′(x)>0,g(x)单调递增,
当x∈(ln2a,+∞)时,g′(x)<0,g(x)单调递减 …(13分)
∴gmax(x)=g(ln2a)=2aln2a-2a>0,解得a> …(15分)
分析:(Ⅰ)原不等式等价于ax(x-2)>0,分a=0,a>0,和a<0讨论可得;
(Ⅱ)设g(x)=f′(x),则x1,x2是方程g(x)=0的两个根,求导数可得g′(x),若a≤0时,不合题意,若a>0时,求导数可得单调区间,进而可得最大值,可得关于a的不等式,解之可得.
点评:本题考查利用导数研究函数的极值,涉及分类讨论的思想,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案