精英家教网 > 高中数学 > 题目详情
(2013•宝山区二模)已知点A(1,0),P1、P2、P3是平面直角坐标系上的三点,且|AP1|、|AP2|、|AP3|成等差数列,公差为d,d≠0.
(1)若P1坐标为(1,-1),d=2,点P3在直线3x-y-18=0上时,求点P3的坐标;
(2)已知圆C的方程是(x-3)2+(y-3)2=r2(r>0),过点A的直线交圆于P1、P3两点,P2是圆C上另外一点,求实数d的取值范围;
(3)若P1、P2、P3都在抛物线y2=4x上,点P2的横坐标为3,求证:线段P1P3的垂直平分线与x轴的交点为一定点,并求该定点的坐标.
分析:(1)利用P1坐标为(1,-1),d=2,求出|AP3|,利用点P3在直线3x-y-18=0上,解方程组即可求点P3的坐标;
(2)求出圆C的方程是(x-3)2+(y-3)2=r2(r>0),的圆心与半径,求出点A与圆的圆心的距离,通过A在圆内与圆外,分别求实数d的取值范围;
(3)利用P1、P2、P3都在抛物线y2=4x上,抛物线的定义,求出线段P1P3的斜率,求出直线方程,通过y=0,推出直线与x轴的交点为一定点,即可求该定点的坐标.
解答:解(1)因为|AP1|、|AP2|、|AP3|成等差数列,且|AP1|=1,d=2,所以|AP3|=5,
设P3(x,y)
(x-1)2+y2=25
3x-y-18=0
,消去y,得x2-11x+30=0,…(2分)
解得x1=5,x2=6,所以P3的坐标为(5,-3)或(6,0)
(2)由题意可知点A到圆心的距离为t=
(3-1)2+(3-0)2
=
13
…(6分)
(ⅰ)当0<r≤
13
时,点A(1,0)在圆上或圆外,|2d|=||AP3|-|AP1||=|P1P3|,
又已知d≠0,0≤|P1P3|≤2r,所以-r≤d<0或 0<d≤r
(ⅱ)当r>
13
时,点A(1,0)在圆内,所以|2d|max=||
13
+r|-|r-
13
||=2
13

又已知d≠0,0<|2d|≤2
13
,即-
13
≤d<0
0<d≤
13

结论:当0<r<
13
时,-r≤d<0或 0<d≤r;当r≥
13
时,-
13
≤d<0
0<d≤
13

(3)因为抛物线方程为y2=4x,所以A(1,0)是它的焦点坐标,
点P2的横坐标为3,即|AP2|=4
设P1(x1,y1),P3(x3,y3),则|AP1|=x1+1,|AP3|=x3+1,|AP1|+|AP3|=2|AP2|,
所以x1+x3=2x2=6
直线P1P3的斜率k=
y3-y1
x3-x1
=
4
y3+y1
,则线段P1P3的垂直平分线l的斜率kl=-
y3+y1
4

则线段P1P3的垂直平分线l的方程为y-
y3+y1
2
=-
y3+y1
4
(x-3)

直线l与x轴的交点为定点(5,0)
点评:本题考查直线与圆锥曲线的位置关系,直线与圆的位置关系的综合应用,直线系方程的应用,考查分析问题解决问题的能力,转化思想的应用与计算能力的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•宝山区二模)已知a∈(
π
2
,π),sina=
3
5
,则tan(a-
π
4
)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宝山区二模)已知函数f(x)=x|x|.当x∈[a,a+1]时,不等式f(x+2a)>4f(x)恒成立,则实数a的取值范围是
(1,+∞)
(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宝山区二模)已知双曲线的方程为
x23
-y2=1
,则此双曲线的焦点到渐近线的距离为
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宝山区二模)(文) 若
x≥1
y≥2
x+y≤6
,则目标函数z=2x+y的最小值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宝山区二模)已知数列{an}的前n项和为Sn,且a1=2,nan+1=Sn+
n(n+1)3
.从{an}中抽出部分项ak1ak2,…,akn,…,(k1<k2<…<kn<…)组成的数列{akn}是等比数列,设该等比数列的公比为q,其中k1=1,n∈N*
(1)求a2的值;
(2)当q取最小时,求{kn}的通项公式;
(3)求k1+k2+…+kn的值.

查看答案和解析>>

同步练习册答案