精英家教网 > 高中数学 > 题目详情

已知a是实数,设函数f(x)=(x-a)

(1)讨论函数f(x)的单调性;

(2)设g(a)为函数f(x)在区间[0,2]上的最小值.

①写出g(a)的表达式;

②求a的取值范围,使得-6≤g(a)≤-2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a是实数,函数f(x)=
x
(x-a)

(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设g(a)为f(x)在区间[0,2]上的最小值.
(i)写出g(a)的表达式;
(ii)求a的取值范围,使得-6≤g(a)≤-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•丹东模拟)已知a>0,设函数f(x)=alnx-2
a
•x+2a
g(x)=
1
2
(x-2
a
)2

(Ⅰ)求函数h(x)=f(x)-g(x)的最大值;
(Ⅱ)若e是自然对数的底数,当a=e时,是否存在常数k、b,使得不等式f(x)≤kx+b≤g(x)对于任意的正实数x都成立?若存在,求出k、b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖北省十堰一中高三(上)10月调考数学试卷(文科)(解析版) 题型:解答题

已知a是实数,函数
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设g(a)为f(x)在区间[0,2]上的最小值.
(i)写出g(a)的表达式;
(ii)求a的取值范围,使得-6≤g(a)≤-2.

查看答案和解析>>

科目:高中数学 来源:2012年全国高考数学领航试卷2(理科)(解析版) 题型:解答题

已知a>0,设函数
(Ⅰ)求函数h(x)=f(x)-g(x)的最大值;
(Ⅱ)若e是自然对数的底数,当a=e时,是否存在常数k、b,使得不等式f(x)≤kx+b≤g(x)对于任意的正实数x都成立?若存在,求出k、b的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案