精英家教网 > 高中数学 > 题目详情
给出下列四个结论:
①函数y=sinx在第一象限是增函数;
②函数y=|cosx+
12
|
的最小正周期是π;
③若am2<bm2,则a<b;
④函数f(x)=x-sinx(x∈R)有3个零点;
⑤对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x>0),则x<0时f′(x)>g′(x).
其中正确结论的序号是
 
.(填上所有正确结论的序号)
分析:利用函数的单调性定义,易判断①的对错;由函数奇偶性的定义,可判断②的对正误;根据不等式的基本性质,可判断③的对错;利用零点个数的判断我们易得④的对错;利用奇偶函数在对称区间上单调性的关系,易判断⑤的正误,进行得到答案.
解答:解:第一象限的角是无数个不连续的区间构成,由函数单调性的定义,易得①错误;
根据函数的单调性我们易判断函数y=|cosx+
1
2
|
的最小正周期是2π,故②错误;
若am2<bm2,由m2>0得a<b一定成立,故③正确;
函数f(x)=x-sinx(x∈R)只有一个零点,故④错误;
由对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),故函数f(x)为奇函数,函数g(x)为偶函数
根据奇函数在对称区间上单调性相同,偶函数在对称区间上单调性相反,易判断⑤正确
故答案为:③⑤
点评:本题考查的知识点是命题真假的判断,其中熟练掌握函数的单调性、奇偶性、周期性,函数零点个数的判断方法及不等式的性质是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个结论:①函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;②函数y=k3x(k>0)(k为常数)的图象可由函数y=3x的图象经过平移得到;③函数y=
1
2
+
1
2x-1
(x≠0)是奇函数且函数y=x(
1
3x-1
+
1
2
)
(x≠0)是偶函数;④函数y=cos|x|是周期函数.其中正确结论的序号是
 
.(填写你认为正确的所有结论序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为1,线段AC1上有两个动点E,F,且EF=
3
3
.给出下列四个结论:
①BF∥CE;
②CE⊥BD;
③三棱锥E-BCF的体积为定值;
④△BEF在底面ABCD内的正投影是面积为定值的三角形;
其中,正确结论的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,D为PA的中点,O为△ABC的中心,给出下列四个结论:①OD∥平面PBC;  ②OD⊥PA;③OD⊥BC;  ④PA=2OD.其中正确结论的序号是
③④
③④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•马鞍山模拟)给出下列四个结论:
①命题''?x∈R,x2-x>0''的否定是''?x∈R,x2-x≤0''
②“若am2<bm2,则a<b”的逆命题为真;
③已知直线l1:ax+2y-1=0,l1:x+by+2=0,则l1⊥l2的充要条件是
ab
=-2

④对于任意实数x,有f(-x)=-f(x),g(-x)=g(x)且x>0时,f'(x)>0,g'(x)>0,则x<0时,f'(x)>g'(x).
其中正确结论的序号是
①④
①④
(填上所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)已知平面α、β、γ、和直线l,m,且l⊥m,α⊥γ,α∩γ=m,γ∩β=l;给出下列四个结论:①β⊥γ ②l⊥α③m⊥β;④α⊥β.其中正确的是(  )

查看答案和解析>>

同步练习册答案