精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的焦点为,准线为上一点,直线与抛物线交于两点,若,则( )

A. B. 8 C. 16 D.

【答案】A

【解析】分析:利用抛物线性质分析线段比,进而得直线斜率,写出直线的方程,再将直线的方程与抛物线y2=4x的方程组成方程组,消去y得到关于x的二次方程,最后利用根与系数的关系结合抛物线的定义即可求线段MN的长.

详解:抛物线C:的焦点为F(1,0),准线为l:x=﹣1,x轴交于点Q

M(x1,y1),N(x2,y2),M,N到准线的距离分别为dM,dN

由抛物线的定义可知|MF|=dM=x1+1,|NF|=dN=x2+1,于是|MN|=|MF|+|NF|=x1+x2+2.

,即,∴.

,∴直线AB的斜率为

∵F(1,0),∴直线PF的方程为y=(x﹣1),

y=(x﹣1),代入方程y2=4x,得3(x﹣1)2=4x,化简得3x2﹣10x+3=0,

∴x1+x2=,于是|MN|=|MF|+|NF|=x1+x2+2=+2=

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某有机水果种植基地试验种植的某水果在售卖前要成箱包装,每箱80个,每一箱水果在交付顾客之前要按约定标准对水果作检测,如检测出不合格品,则更换为合格品.检测时,先从这一箱水果中任取10个作检测,再根据检测结果决定是否对余下的所有水果作检测.设每个水果为不合格品的概率都为,且各个水果是否为不合格品相互独立.

(Ⅰ)记10个水果中恰有2个不合格品的概率为,求取最大值时p的值

(Ⅱ)现对一箱水果检验了10个,结果恰有2个不合格,以(Ⅰ)中确定的作为p的值.已知每个水果的检测费用为1.5元,若有不合格水果进入顾客手中,则种植基地要对每个不合格水果支付a元的赔偿费用

(ⅰ)若不对该箱余下的水果作检验,这一箱水果的检验费用与赔偿费用的和记为X,求EX;

(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,当种植基地要对每个不合格水果支付的赔偿费用至少为多少元时,将促使种植基地对这箱余下的所有水果作检验?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的离心率为,过其右焦点作斜率为的直线,交双曲线的两条渐近线于两点(点在轴上方),则( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,设函数

1)若函数的图象关于直线对称,且时,求函数的单调增区间;

2)在(1)的条件下,当时,函数有且只有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象向左平移1个单位,再将图象上的所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数的图象.

1)求函数的解析式和定义域;

2)求函数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为

1)求实数的取值范围;

2)设实数的最大值,若实数满足,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】表示一位骑自行车和一位骑摩托车的旅行者在相距80 km的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息:

①骑自行车者比骑摩托车者早出发3 h,晚到1 h

②骑自行车者是变速运动,骑摩托车者是匀速运动;

③骑摩托车者在出发1.5 h后追上了骑自行车者;

④骑摩托车者在出发1.5 h后与骑自行车者速度一样.

其中,正确信息的序号是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点为椭圆上一点.

1)求椭圆C的方程;

2)已知两条互相垂直的直线经过椭圆的右焦点,与椭圆交于四点,求四边形面积的的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某“农家乐”接待中心有客房200间,每间日租金为40元,每天都客满.根据实际需要,该中心需提高租金,如果每间客房日租金每增加4元,客房出租就会减少10.(不考虑其他因素)

1)设每间客房日租金提高元(),记该中心客房的日租金总收入为,试用表示

2)在(1)的条件下,每间客房日租金为多少时,该中心客房的日租金总收入最高?

查看答案和解析>>

同步练习册答案