【题目】已知函数f(x)=ln(x+1)+ax,其中a∈R.
(Ⅰ) 当a=﹣1时,求证:f(x)≤0;
(Ⅱ) 对任意x2≥ex1>0,存在x∈(﹣1,+∞),使
成立,求a的取值范围.(其中e是自然对数的底数,e=2.71828…)
【答案】(1)见解析(2)
【解析】
试题分析:(1)求出函数的导数,通过讨论
的范围,求出函数的单调区间,从而证明结论即可.
(2)令
,把问题转化为
,设
,根据函数的单调性证明即可.
试题分析:
解:(Ⅰ)证明:当 a=﹣1时,f(x)=ln(x+1)﹣x(x>﹣1),
则
,令f'(x)=0,得x=0.
当﹣1<x<0时,f'(x)>0,f(x)单调递增;
当x>0时,f'(x)<0,f(x)单调递减.
故当x=0时,函数f(x)取得极大值,也为最大值,
所以f(x)max=f(0)=0,
所以,f(x)≤0,得证.
(Ⅱ)不等式
,
即为
.
而 ![]()
=
.
令
.故对任意t≥e,存在x∈(﹣1,+∞),使
恒成立,
所以
,
设
,则
,
设u(t)=t﹣1﹣lnt,知
对于t≥e恒成立,
则u(t)=t﹣1﹣lnt为[e,+∞)上的增函数,
于是u(t)=t﹣1﹣lnt≥u(e)=e﹣2>0,
即
对于t≥e恒成立,
所以
为[e,+∞)上的增函数,
所以
;
设p(x)=﹣f(x)﹣a,即p(x)=﹣ln(x+1)﹣ax﹣a,
当a≥0时,p(x)为(0,+∞)上的减函数,
且其值域为R,可知符合题意.
当a<0时,
,由p'(x)=0可得
,
由p'(x)>0得
,则p(x)在
上为增函数,
由p'(x)<0得
,则p(x)在
上为减函数,
所以
.
从而由
,解得
,
综上所述,a的取值范围是 ![]()
科目:高中数学 来源: 题型:
【题目】如图1,在直角梯形ADCE中,AD∥EC,∠ADC=90°,AB⊥EC,AB=EB=1,
.将△ABE沿AB折到△ABE1的位置,使∠BE1C=90°.M,N分别为BE1 , CD的中点.如图2. ![]()
(1)求证:MN∥平面ADE1;
(2)求证:AM⊥E1C;
(3)求平面AE1N与平面BE1C所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共
个,生产一个卫兵需
分钟,生产一个骑兵需
分钟,生产一个伞兵需
分钟,已知总生产时间不超过
小时,若生产一个卫兵可获利润
元,生产一个骑兵可获利润
元,生产一个伞兵可获利润
元.
(1)用每天生产的卫兵个数
与骑兵个数
表示每天的利润
(元);
(2)怎么分配生产任务才能使每天的利润最大,最大利润是多少?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)(x∈R),对函数y=g(x)(x∈R),定义g(x)关于f(x)的“对称函数”为函数y=h(x)(x∈R),y=h(x)满足:对任意的x∈R,两个点(x,h(x)),(x,g(x))关于点(x,f(x))对称.若h(x)是g(x)=
关于f(x)=3x+b的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+1(a>0),g(x)=x3+bx
(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a、b的值;
(2)当a2=4b时,求函数f(x)+g(x)的单调区间,并求其在区间(﹣∞,﹣1)上的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.![]()
(1)求证:BF⊥平面ACFD;
(2)求直线BD与平面ACFD所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.
(Ⅰ)求a,b的值;
(Ⅱ)讨论f(x)的单调性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶
元,售价每瓶
元,未售出的酸奶降价处理,以每瓶
元的价格当天全部处理完。据往年销售经验,每天需求量与当天最高气温(单位:
)有关,如果最高气温不低于
,需求量为
瓶;如果最高气温位于区间
,需求量为
瓶;如果最高气温低于
,需求量为
瓶,为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温 |
|
|
|
|
|
|
天数 |
|
|
|
|
|
|
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量不超过
瓶的概率;
(2)设六月份一天销售这种酸奶的利润为
(单位:元),若该超市在六月份每天的进货量均为
瓶,写出
的所有可能值,并估计
大于零的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log2x+
,若x1∈(1,2),x2∈(2,+∞),则( )
A.f(x1)<0,f(x2)<0
B.f(x1)<0,f(x2)>0
C.f(x1)>0,f(x2)<0
D.f(x1)>0,f(x2)>0
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com