精英家教网 > 高中数学 > 题目详情

已知函数

(1)若函数的两个极值点为,求函数的解析式;

(2)在(1)的条件下,求函数的图象过点的切线方程;

(3)对一切恒成立,求实数的取值范围。

 

【答案】

(1)  (2)x+y-2=0   (3)  a≥-2

【解析】函数的两个极值点处导数为0 ,g’(x)=3x2+2ax-1带入即可;

要求函数的图象过点的切线方程,先求函数在点处的导数即斜率,在用点斜式求出方程;恒成立求实数的取值范围时,一般分离参数,2a≥2lnx-3x-再在最值处成立即可。

解:(1)g’(x)=3x2+2ax-1由题意:

(2)由(1)可得:g(x)=x3-x2-x+2(1o)若P为切点,则切线方程为:y=1

2 o若P不是切点,设切点Q(x0,y0)∴切线方程为y-y0=(3x02-2x0-1)(x-x0)

1-(x03-x02-x0+2)=(3x02-2x0-1)(1-x0)    2x0(x0-1)2=0    ∴x0=0   ∴切点(0,2)

∴切线方程:x+y-2=0

(3)2xlnx≤3x2+2ax-1+2    ∴2ax≥2xlnx-3x2-1     ∵x>0   ∴2a≥2lnx-3x-

令ln(x)=2lnx-3x-   

x       (0,1)    1       (1,+∞)

h’(x)      +       0       -

h(x)        ↑      极大值      ↓

∴h(x) ≤h(1)=-4    ∴2a≥-4    a≥-2

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x
-1
,则f(x)的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•自贡一模)已知函数f(x)=  
x+1
,  x
≤0,
log2x
,x>0
则函数y=f[f(x)]+1的零点个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(2x+1)的定义域为[1,2],则函数f(4x+1)的定义域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•永州一模)已知函数f(x)=ln(1+x)-p
x

(1)若函数f(x)在定义域内为减函数,求实数p的取值范围;
(2)如果数列{an}满足a1=3,an+1=[1+
1
n2(n+1)2
]an+
1
4n
,试证明:当n≥2时,4≤an<4e
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•浦东新区一模)已知函数f(x)=
x2+1
-ax
,其中a>0.
(1)若2f(1)=f(-1),求a的值;
(2)当a≥1时,判断函数f(x)在区间[0,+∞)上的单调性;
(3)若函数f(x)在区间[1,+∞)上是增函数,求a的取值范围.

查看答案和解析>>

同步练习册答案