精英家教网 > 高中数学 > 题目详情
若f(x)=
f(x+2),x<1
log2x,x≥1
,则f(-2)的值为(  )
分析:利用函数的解析式知道当x<1时是以2周期的周期函数,故f(-2)=f(2),再代入函数解析式即得
解答:解:∵f(x)=
f(x+2),x<1
log2x,x≥1

∴当x<1时,f(-2)=f(0)=f(2),
∴当x=2时即f(2)=log22=1
故选B.
点评:本题主要考查了分段函数的应用,但解题的关键在于根据x≥0时的函数的周期性将f(-2)转化成为f(2),属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省湛江二中高二(上)期中数学试卷(解析版) 题型:解答题

(文)已知函数,(a,b∈R)
(Ⅰ)当b=0时,若f(x)在[2,+∞)上单调递增,求a的取值范围;
(Ⅱ)求满足下列条件的所有实数对(a,b):当a是整数时,存在x,使得f(x)是f(x)的最大值,g(x)是g(x)的最小值;
(Ⅲ)对满足(Ⅱ)的条件的一个实数对(a,b),试构造一个定义在D={x|x>-2,且x≠2k-2,k∈N}上的函数h(x),使当x∈(-2,0)时,h(x)=f(x),当x∈D时,h(x)取得最大值的自变量的值构成以x为首项的等差数列.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省湛江二中高二(上)期中数学试卷(解析版) 题型:解答题

(文)已知函数,(a,b∈R)
(Ⅰ)当b=0时,若f(x)在[2,+∞)上单调递增,求a的取值范围;
(Ⅱ)求满足下列条件的所有实数对(a,b):当a是整数时,存在x,使得f(x)是f(x)的最大值,g(x)是g(x)的最小值;
(Ⅲ)对满足(Ⅱ)的条件的一个实数对(a,b),试构造一个定义在D={x|x>-2,且x≠2k-2,k∈N}上的函数h(x),使当x∈(-2,0)时,h(x)=f(x),当x∈D时,h(x)取得最大值的自变量的值构成以x为首项的等差数列.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年四川省成都七中高三数学专项训练:指数、对数函数(解析版) 题型:解答题

(文)已知函数,(a,b∈R)
(Ⅰ)当b=0时,若f(x)在[2,+∞)上单调递增,求a的取值范围;
(Ⅱ)求满足下列条件的所有实数对(a,b):当a是整数时,存在x,使得f(x)是f(x)的最大值,g(x)是g(x)的最小值;
(Ⅲ)对满足(Ⅱ)的条件的一个实数对(a,b),试构造一个定义在D={x|x>-2,且x≠2k-2,k∈N}上的函数h(x),使当x∈(-2,0)时,h(x)=f(x),当x∈D时,h(x)取得最大值的自变量的值构成以x为首项的等差数列.

查看答案和解析>>

科目:高中数学 来源:2006年上海市八校高三联考数学试卷(松江二中、青浦、七宝、育才、市二、行知、位育)(解析版) 题型:解答题

(文)已知函数,(a,b∈R)
(Ⅰ)当b=0时,若f(x)在[2,+∞)上单调递增,求a的取值范围;
(Ⅱ)求满足下列条件的所有实数对(a,b):当a是整数时,存在x,使得f(x)是f(x)的最大值,g(x)是g(x)的最小值;
(Ⅲ)对满足(Ⅱ)的条件的一个实数对(a,b),试构造一个定义在D={x|x>-2,且x≠2k-2,k∈N}上的函数h(x),使当x∈(-2,0)时,h(x)=f(x),当x∈D时,h(x)取得最大值的自变量的值构成以x为首项的等差数列.

查看答案和解析>>

同步练习册答案