【题目】在
对应的边分别为
,
且
,
(1)求角A,
(2)求证: ![]()
(3)若
,且BC边上的中线AM长为
,求
的面积。
科目:高中数学 来源: 题型:
【题目】已知函数
,
.
(1)若曲线
在
处的切线的方程为
,求实数
的值;
(2)设
,若对任意两个不等的正数
,都有
恒成立,求实数
的取值范围;
(3)若在
上存在一点
,使得
成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某投资公司计划投资A,B两种金融产品,根据市场调查与预测,A产品的利润y1与投资金额x的函数关系为y1=18-
,B产品的利润y2与投资金额x的函数关系为y2=
(注:利润与投资金额单位:万元).
(1)该公司已有100万元资金,并全部投入A,B两种产品中,其中x万元资金投入A产品,试把A,B两种产品利润总和表示为x的函数,并写出定义域;
(2)在(1)的条件下,试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知圆
过坐标原点
且圆心在曲线
上.
(1)若圆
分别与
轴、
轴交于点
、
(不同于原点
),求证:
的面积为定值;
(2)设直线
与圆
交于不同的两点
,且
,求圆
的方程;
(3)设直线
与(2)中所求圆
交于点
、
,
为直线
上的动点,直线
,
与圆
的另一个交点分别为
,
,且
,
在直线
异侧,求证:直线
过定点,并求出定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
为奇函数,且相邻两对称轴间的距离为
.
(Ⅰ)当
时,求
的单调递减区间;
(Ⅱ)将函数
的图象沿
轴方向向右平移
个单位长度,再把横坐标缩短到原来的
(纵坐标不变),
得到函数
的图象.当
时,求函数
的值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com