【题目】(题文)如图,在五面体ABCDEF中,四边形EDCF是正方形,
.
![]()
(1)证明:
;
(2)已知四边形ABCD是等腰梯形,且
,求五面体ABCDEF的体积.
【答案】(1)见解析;(2)见解析.
【解析】
分析:(1)先根据线面垂直判定定理得
平面
.,即得
. 再根据平行关系得结论,(2)先分割
. 过
作
,根据线面垂直判定定理得
平面
,则
是四棱锥
的高.由(1)可得
平面
,则
是三棱锥
的高.最后根据锥体体积公式求体积.
详解:(1)证明:由已知的
,
,
、
平面
,且
∩
,
所以
平面
.
又
平面
,所以
.
又因为
//
,所以
.
(2)解:连结
、
,则
.
![]()
过
作
交
于
,又因为
平面
,所以
,且
∩
,
所以
平面
,则
是四棱锥
的高.
因为四边形
是底角为
的等腰梯形,
,
所以
,
,
.
因为
平面
,
//
,所以
平面
,则
是三棱锥
的高.
所以
,
所以
.
点睛:空间几何体体积问题的常见类型及解题策略
(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.
(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.
(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.
科目:高中数学 来源: 题型:
【题目】进入冬天,大气流动性变差,容易形成雾握天气,从而影响空气质量.某城市环保部门试图探究车流量与空气质量的相关性,以确定是否对车辆实施限行.为此,环保部门采集到该城市过去一周内某时段车流量与空气质量指数的数据如下表:
![]()
(1)根据表中周一到周五的数据,求y关于x的线性回归方程。
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2,则认为得到的线性回归方程是可靠的.请根据周六和周日数据,判定所得的线性回归方程是否可靠?
注:回归方程
中斜率和截距最小二乘估计公式分别为
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以平面直角坐标系的原点为极点,
轴的正半轴为极轴,建立极坐标系,已知直线
的参数方程是
(m>0,t为参数),曲线
的极坐标方程为
.
(1)求直线
的普通方程和曲线
的直角坐标方程;
(2)若直线
与
轴交于点
,与曲线
交于点
,且
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年,随着中国第一款5G手机投入市场,5G技术已经进入高速发展阶段.已知某5G手机生产厂家通过数据分析,得到如下规律:每生产手机
万台,其总成本为
,其中固定成本为800万元,并且每生产1万台的生产成本为1000万元(总成本=固定成本+生产成本),销售收入
万元满足![]()
(1)将利润
表示为产量
万台的函数;
(2)当产量
为何值时,公司所获利润最大?最大利润为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】按照国家质量标准:某种工业产品的质量指标值落在[100,120)内,则为合格品,否则为不合格品.某企业有甲乙两套设备生产这种产品,为了检测这两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本对规定的质量指标值进行检测.表1是甲套设备的样本频数分布表,图1是乙套设备的样本频率分布直方图.
![]()
质量指标值 | [95,100) | [100,105) | [105,110) | [110,115) | [115,120) | [120,125] |
频数 | 1 | 4 | 19 | 20 | 5 | 1 |
表1:甲套设备的样本频数分布表
(1)将频率视为概率,若乙套设备生产了5000件产品,则其中合格品约有多少件?
(2)填写下面2×2列联表,并根据列联表判断是否有95%的把握认为这种产品的质量指标值与甲乙两套设备的选择有关:
甲套设备 | 乙套设备 | 合计 | |
合格品 | |||
不合格品 | |||
合计 |
(3)根据表和图,对甲、乙两套设备的优劣进行比较.参考公式及数据:x2=![]()
P(Х2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,曲线
的参数方程为
(
为参数,
),已知直线
的方程为
.
(1)设
是曲线
上的一个动点,当
时,求点
到直线
的距离的最小值;
(2)若曲线
上的所有点均在直线
的右下方,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为
,求
的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com