【题目】长方体ABCD﹣A1B1C1D1中AB=AA1=2,AD=1,E为CC1的中点,则异面直线BC1与AE所成角的余弦值为( )![]()
A.![]()
B.![]()
C.![]()
D.![]()
科目:高中数学 来源: 题型:
【题目】生产甲乙两种精密电子产品,用以下两种方案分别生产出甲乙产品共
种,现对这两种方案生产的产品分别随机调查了各
次,得到如下统计表:
①生产
件甲产品和
件乙产品
正次品 | 甲正品 甲正品 乙正品 | 甲正品 甲正品 乙次品 | 甲正品 甲次品 乙正品 | 甲正品 甲次品 乙次品 | 甲次品 甲次品 乙正品 | 甲次品 甲次品 乙次品 |
频 数 |
|
|
|
|
|
|
②生产
件甲产品和
件乙产品
正次品 | 乙正品 乙正品 甲正品 | 乙正品 乙正品 甲次品 | 乙正品 乙次品 甲正品 | 乙正品 乙次品 甲次品 | 乙次品 乙次品 甲正品 | 乙次品 乙次品 甲次品 |
频 数 |
|
|
|
|
|
|
已知生产电子产品甲
件,若为正品可盈利
元,若为次品则亏损
元;生产电子产品乙
件,若为正品可盈利
元,若为次品则亏损
元.
(I)按方案①生产
件甲产品和
件乙产品,求这
件产品平均利润的估计值;
(II)从方案①②中选其一,生产甲乙产品共
件,欲使
件产品所得总利润大于
元的机会多,应选用哪个?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的奇函数,且f(﹣3)=0,当x>0时,有f(x)﹣xf′(x)>0成立,则不等式f(x)>0的解集是( )
A.(﹣∞,﹣3)∪(0,3)
B.(﹣∞,﹣3)∪(3,+∞)
C.(﹣3,0)∪(0,3)
D.(﹣3,0)∪(3,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,O为坐标原点,已知向量
=(﹣1,2),又点A(8,0),B(n,t),C(ksinθ,t).
(1)若
⊥
,且|
|=
|
|,求向量
;
(2)若向量
与向量
共线,常数k>0,求f(θ)=tsinθ的值域;
(3)当(2)问中f(θ)的最大值4时,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知圆
经过椭圆![]()
的焦点.
![]()
(1)求椭圆
的标准方程;
(2)设直线
交椭圆
于
两点,
为弦
的中点,
,记直线
的斜率分别为
,当
时,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
的极坐标方程为
,在以极点为直角坐标原点
,极轴为
轴的正半轴建立的平面直角坐标系
中,直线
的参数方程为
(
为参数).
(1)写出直线
的普通方程与曲线
的直角坐标方程;
(2)在平面直角坐标系中,设曲线
经过伸缩变换
:
得到曲线
,若
为曲线
上任意一点,求点
到直线
的最小距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,点D是BC的中点. ![]()
(1)求证:A1B∥平面ADC1;
(2)若AB⊥AC,AB=AC=1,AA1=2,求平面ADC1与ABA1所成二面角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=60°,AD=2,AM=1,E为AB的中点.
(Ⅰ)求证:AN∥平面MEC;
(Ⅱ)在线段AM上是否存在点P,使二面角P﹣EC﹣D的大小为
?若存在,求出AP的长h;若不存在,请说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com